Invariants of 4-manifolds from Khovanov-Rozansky link homology

Paul Wedrich MPIM / Uni Bonn

Joint work with Scott Morrison and Kevin Walker

QUACKS, 14th August 2020

Starting in dimension 3...

Link invariants

The \mathfrak{gl}_N link polynomial P_N : {framed, oriented links} $o \mathbb{Z}[q^{\pm 1}]$:

$$P_N(\nearrow) - P_N(\nearrow) = (q - q^{-1})P_N(\nearrow)$$

$$P_N(\nearrow) = q^N P_N(\nearrow), \quad P_N(L_1 \sqcup L_2) = P_N(L_1)P_N(L_2)$$

Higher categories

Ribbon category $\operatorname{Rep}(U_q(\mathfrak{gl}_N))$, RT tangle invariants

Manifold invariants

The \mathfrak{gl}_N skein module for compact, oriented M^3 , $P \subset \partial M^3$:

$$\mathsf{Sk}_{N}(M^{3};P) := \frac{\mathbb{Z}[q^{\pm 1}]\langle \mathsf{framed}, \mathsf{ oriented tangles in } (M^{3},P)\rangle}{\langle \mathsf{isotopy}, \mathsf{ local relations in } B^{3} \hookrightarrow M^{3} \rangle}$$

Part of a 0123ε -dimensional TFT.

...upgrading to dimension 4

Khovanov-Rozansky 2004, Robert-Wagner+Ehrig-Tubbenhauer-W 2017:

Link invariants

The \mathfrak{gl}_N Khovanov-Rozansky link homology

 $\mathsf{KhR}_{\mathit{N}} \colon \{\mathsf{links/link} \; \mathsf{cobordisms}\} o \mathsf{K}^b(\mathsf{gr}^{\mathbb{Z}}\mathsf{Vect}), \quad \chi_q \circ \mathsf{KhR}_{\mathit{N}} = P_{\mathit{N}}$

Morrison-Walker-W 2019:

Higher categories

A ribbon 2-category / disk-like 4-category CatRep $(U_q(\mathfrak{gl}_N))$.

Manifold invariants

A 'skein module' $\mathcal{S}_N(W^4;L)$ for compact, oriented, smooth W^4 , $L\subset\partial W^4$.

$$S_N(B^4; L) \cong \operatorname{KhR}_N(L).$$

Expected to be part of a 01234ε -dimensional TFT.

Approaches

Routes to Khovanov–Rozansky homology for (links in) 3-manifolds:

- Categorify Witten-Reshetikhin-Turaev invariants
 - Categorification of tensor product reps & at roots of unity
 - RepCat($U_q(\mathfrak{gl}_N)$)
- Categorify 3D skein modules
 - Via surgery
 - Via Heegaard splitting, categorified skein algebras
- Extending Witten's model for Khovanov homology in \mathbb{R}^3
- Higher skein modules (this talk)
 - Functorial tangle invariant \rightarrow 4-category \rightarrow 4D skein module

Khovanov-Rozansky homology

Defining KhRN requires:

- the data of a chain complex for each link diagram (KhR04)
- the data of a chain map for every elementary movie (KhR04)
- movie move checks (Blanchet 10, ETW 17)

Khovanov-Rozansky homology

- the data of a chain complex for each link diagram (KhR04)
- the data of a chain map for every elementary movie (KhR04)
- movie move checks (Blanchet 10, ETW 17)

Functoriality in S^3

For $S_N(B^4; L) \cong \operatorname{KhR}_N(L)$ we need KhR_N for links in $S^3 = B^3 \cup \{\infty\}$.

- links in S^3 generically avoid ∞ ⇒ same chain complexes
- link cobordisms in $S^3 \times I$ generically avoid $\infty \times I$ ⇒ same chain maps
- link cobordism isotopies in $S^3 \times I^2$ might intersect $\infty \times I^2$ transversely \implies a new movie move to check, non-local if viewed from B^3

Theorem (M.-W.-W. 2019)

KhR_N is invariant under the sweeparound move, thus functorial in S^3 .

Proving the sweeparound move

- Reduce to the case of almost braid closures
- Compare front and back versions of

- Consider filtration by homological degree of extra crossings
- Front and back versions of R1, R2, R3 agree* in associated graded

Break

Summary

- Strategy: generalise link homologies to skein modules of 4-manifolds
- Review: Khovanov-Rozansky gl_N link homology KhR_N
- Theorem: KhR_N is functorial in S^3

What's next

From link homology to skein module

In analogy to

$$\mathsf{Sk}_{N}(M^{3};P) := rac{\mathbb{Z}[q^{\pm 1}]\langle \mathsf{framed, oriented tangles in } (M^{3},P) \rangle}{\langle \ker RT_{N} \; \mathsf{in} \; B^{3} \hookrightarrow M^{3} \rangle}$$

we would like to define $S_N^0(W^4; L)$ as:

Problem: Want $S_N^0(B^4; L) \cong \operatorname{KhR}_N(L)$, but this is not always spanned by images of cobordisms maps.

⇒ consider decorated framed, oriented surfaces.

Lasagna algebra

Khovanov-Rozansky homology is an algebra for the lasagna operad

Khovanov-Rozansky skeins

A lasagna filling of W^4 with a link $L \subset \partial W^4$ is the data of:

 B_i^4 : finitely many disjoint 4-balls in W^{4° L_i : input links in ∂B_i^4 Σ : f., o. surface in $(W^4 \setminus \sqcup_i B_i^4; L \sqcup_i L_i)$ $v_i \in \operatorname{KhR}_N(\partial B_i^4, L_i)$

Definition of $\mathcal{S}_N^0(W^4;L)$

Definition

We define the bigraded vector space

$$\mathcal{S}_N^0(W^4;L) := \Bbbk \langle \mathsf{lasagna} \; \mathsf{fillings} \; \mathsf{of} \; (W^4,L)
angle / \sim$$

where the equivalence relation \sim is generated by

with $v = \mathsf{KhR}(D)(v_i \otimes \cdots \otimes v_i)$.

Ribbon 2-category via KhR_N for tangles

$$\begin{cases} \text{tangle diagrams} \\ \text{movies of diagrams/m. moves} \end{cases} \xrightarrow{ \begin{bmatrix} - \end{bmatrix}_N } H^*\mathrm{Ch}^b(N\mathsf{Foam})$$

$$\downarrow \cong \qquad \qquad \chi_q \downarrow$$

$$\begin{cases} \text{tangles embedded in } B^3 \\ \text{cobordisms in } B^3 \times I/\mathrm{isotopy} \end{cases} \xrightarrow{ RT_N \circ K_0 } \mathsf{Rep}(U_q(\mathfrak{gl}_N))$$

Theorem (M.-W.-W. 2019)

There is a braided monoidal dg 2-category \mathbf{KhR}_N with

- Objects: tangle boundary sequences
- 1-morphisms: Morse data for tangle diagrams
- 2-morphisms: $\mathbf{KhR}_N(T_1, T_2) := H^* \mathbf{Ch}^b(N\mathsf{Foam})(\llbracket T_1 \rrbracket_N, \llbracket T_2 \rrbracket_N).$

Think of \mathbf{KhR}_N as categorification of $\mathrm{Rep}(U_q(\mathfrak{gl}_N))$.

Towards derived skein modules & TFT

Questions

Is KhR_N 4-dualizable and SO(4)-fixed in a suitable 5-category of braided monoidal dg 2-categories? What is the role of the sweeparound move?

 \implies a local 01234 ε -D oriented TFT via the cobordism hypothesis.

Proposed direct construction for the 4ε part:

Theorem (M.-W.-W. 2019)

KhR_N controls a disk-like 4-category, determines $S_N(W^4; L)$ via the blob complex (Morrison–Walker).

Examples

Example (B^4)

 $S_N(B^4; L) \cong S_N^0(B^4; L) \cong KhR(L)$ from the definition.

Example $(B^3 \times S^1)$

 $S_N(B^3 \times S^1; L)$ is the Hochschild homology of a dg category $S_N(B^3; pts)$ with coefficients in a dg bimodule associated to a tangle closing to L.

Conjecture

 $S_N(B^3 \times S^1; L)$ is a \mathfrak{gl}_N -analog of Rozansky's homology theory for null-homologous links L in $S^2 \times S^1$. Computable as $S_N(B^4; L')$ for L' obtained by infinite full-twist insertion. C.f. Willis.