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BACKGROUND: Catalysis has had a transform-
ative impact on society, playing a crucial role
in the production of modern materials, med-
icines, fuels, and chemicals. Precious metals
have been the cornerstone of many industrial
catalytic processes for decades, providing high
activity, stability, and tolerance to poisons. In
stark contrast, redox catalysis essential to life
is carried out by metalloenzymes that feature
exclusively Earth-abundant metals (EAMs).
The terrestrial abundance of some EAMs is
104 times that of precious metals, and thus
their increased use would lead to reduced cost
and environmental footprint. In addition to
these practical considerations, EAMs display
distinct reactivity profiles that originate from
their characteristic electronic structure, thermo-
chemistry, and kinetics. The behavior of EAMs
provides compelling scientific opportunities for
catalyst design.Weassert that nature’s blueprint
provides essential principles for vastly expand-
ing the use of EAMs in sustainable catalysis.

ADVANCES: Exquisite tuning of the local envi-
ronment around EAM active sites is key to
enabling their use in catalysis. Such control

is achieved in enzymatic catalysis by directed
evolution of the amino acid environment,
resulting in engineered enzymes with extra-
ordinary catalytic performance. Similarly in
molecular catalysis, modifying the steric and
electronic properties of ligands can lead to
some EAM catalysts with performance supe-
rior to that obtained from precious metal
catalysts. In addition, for heterogeneous cat-
alysts, the local environment and electronic
structure of active sites can be modified by
bonding to other metals or main-group ele-
ments, facilitating reaction pathways distinct
from those involving precious metals. Innova-
tions in the design of EAM catalysts demon-
strate their potential to catalyze many of the
reactions that traditionally relied on precious
metals, although further improvements are
needed in activity, selectivity, lifetime, or energy
efficiency. The characteristics of EAMs point to
an overarching need for improved theories and
computational methods that accurately treat
theirmulticonfigurational electronic structure.

OUTLOOK: The remarkable ability of enzymes
to catalyze a variety of reactions under mild

conditions, using only EAMs, highlights com-
pelling opportunities for the discovery of new
catalysis. Although enzymes are versatile plat-
forms for harnessing the properties of EAMs,
they are insufficiently robust under the harsh
pH, temperature, pressure, and solvent condi-
tions required for some industrial catalytic pro-
cesses. Thus, systematic strategies are needed
for directed evolution to extend the reactivity
and persistence of engineered enzymes. For
molecular catalysts, the tunability of the ligands
provides opportunities for systematically vary-
ing the activities of EAMs. Key challenges
include enhancing metal-ligand cooperativ-
ity, controlling transport to EAM active sites,
and mastering the interactions of EAM centers
with bothmetal-based andorganic-based redox-
active ligands. In heterogeneous catalysis, tuning
the lattice environment of EAMs offers new
opportunities for catalyst discovery, but for
practical applications EAM catalysts should
exhibit long-term stability and high active-
site density. Thus, advances are needed in
the synthesis of materials with tunable phase
and nanostructure, as well as insights into how
EAM catalysts undergo electronic and struc-
tural changes under sustained catalytic turn-
over. Strategies for controlling EAM reactivity
patterns, coupled with advances in synthetic
methods and spectroscopic and computational
techniques, are critical for the systematic use of
EAMs in sustainable catalysis.▪
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Catalysis by Earth-abundant
metals. Nature’s blueprint provides
the fundamental principles for
expanding the use of abundant
metals in catalysis by controlling
the local environment and
electronic structure of metal
centers. Examples include
nitrogenase-based enzymatic
catalysts for N2 reduction,
metalloporphyrin-based molecular
catalysts for reduction of oxygen
and carbon dioxide, and metal
chalcogenides in heterogeneous
catalysis for hydrodesulfurization
and hydrogen evolution reactions.

The list of author affiliations is available in the full article online.
*Corresponding author. Email: morris.bullock@pnnl.gov
(R.M.B.); jgchen@columbia.edu (J.G.C.); gagliard@umn.edu
(L.G.); yogi@mit.edu (Y.S.)
Cite this article as R. M. Bullock et al., Science 369, eabc3183
(2020). DOI: 10.1126/science.abc3183

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abc3183

on A
ugust 13, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


REVIEW
◥

CATALYSIS

Using nature’s blueprint to expand catalysis
with Earth-abundant metals
R. Morris Bullock1*, Jingguang G. Chen2,3*, Laura Gagliardi4*, Paul J. Chirik5, Omar K. Farha6,
Christopher H. Hendon7, Christopher W. Jones8, John A. Keith9, Jerzy Klosin10, Shelley D. Minteer11,
Robert H. Morris12, Alexander T. Radosevich13, Thomas B. Rauchfuss14, Neil A. Strotman15,
Aleksandra Vojvodic16, Thomas R. Ward17, Jenny Y. Yang18, Yogesh Surendranath13*

Numerous redox transformations that are essential to life are catalyzed by metalloenzymes that
feature Earth-abundant metals. In contrast, platinum-group metals have been the cornerstone of many
industrial catalytic reactions for decades, providing high activity, thermal stability, and tolerance to
chemical poisons. We assert that nature’s blueprint provides the fundamental principles for vastly
expanding the use of abundant metals in catalysis. We highlight the key physical properties of abundant
metals that distinguish them from precious metals, and we look to nature to understand how the
inherent attributes of abundant metals can be embraced to produce highly efficient catalysts for
reactions crucial to the sustainable production and transformation of fuels and chemicals.

C
atalysis has had a transformative impact
on society, playing a decisive role in the
production of modern materials we use
daily, medicines to keep us healthy, and
fuels for transportation. Most of the key

chemical reactions essential to our contempo-
rary lifestyle are catalyzed by transitionmetals
(TMs). The terrestrial abundance of TMs varies
over a remarkable range. The first-row (3d)
metals of the transition series in the periodic
table, as well as the early second-row (4d) and
third-row (5d) metals, are relatively abundant,
whereas the platinum group metals (PGMs)

that constitute the mid- to late portion of the
second and third rows have substantially lower
crustal abundance (Fig. 1) (1). Here, we high-
light frontier opportunities for designing and
enablingnewcatalysts basedonEarth-abundant
metals (EAMs), with an emphasis on redox re-
actions crucial to the sustainable production
and transformation of fuels and chemicals.
Many redox transformations (2) that are es-

sential to life are catalyzed by EAMs in nature.
Because biological organisms must accumu-
late metals from their surroundings, evolu-
tion selected the EAMs exclusively in biological
catalysis. Indeed, there are no known native
biological catalysts that use a PGM. Conse-
quently, metalloenzymes provide an expansive
existence proof that EAMs catalyze complex
redox transformations. A tri-Cu active site in the
laccase enzyme (3, 4) reduces O2 to H2O, a key
cathodic reaction in fuel cells. A cluster con-
taining Fe andMo reduces N2 to NH3 in nitro-
genase (5). A dinuclear Ni active site catalyzes
the CO insertion reaction in acetyl–coenzymeA
(CoA) synthase (Fig. 2, top left). Enzymes con-
taining Ni-Fe organometallic complexes carry
out the reversible interconversion of H2 and
H+ in hydrogenase (6) (Fig. 2, middle left). A
Mn-Ca cluster catalyzes the oxidation of water
to O2 in photosystem II (7) (Fig. 2, bottom left).
The selective oxidation ofmethane tomethanol
occurs at the dinuclear Fe active site in meth-
ane monooxygenase (8). Diverse C-H function-
alization reactions are catalyzed by Fe-S cluster
active sites in radical S-adenosylmethionine
(SAM) enzymes (9). All of these transforma-
tions involvemultielectron redox reactions, and
most require precise control of the delivery or
removal of protons.
In contrast to the extensive use of EAMs in

nature, PGMshave historically been the corner-

stone of many industrial catalytic reactions for
decades, owing to their high catalytic activity,
thermal stability, and tolerance to chemical
poisons. Pd-catalyzed cross-coupling reactions
that form C-C bonds (10) have broad utility
and tremendous versatility in pharmaceutical,
electronic, and materials applications. A sec-
ondwave of Pd-catalyzed cross-coupling chem-
istry has given rise to powerfulmethods for C-N,
C-S, and C-O bond-forming reactions that are
widely used (11). Rh-based complexes catalyze
the CO insertion reaction, hydroformylation
(12) (Fig. 2, top right). Pt is the prototypical
catalyst for hydrogen production (13) and oxi-
dation (Fig. 2,middle right). Ir oxide catalyzes
the oxidation of water to O2 (14) in polymer elec-
trolyte membrane (PEM) electrolyzers (Fig. 2,
bottom right). C-H oxidation and functionaliza-
tion reactions have been extensively developed
using Pd catalysts (15). Selective hydrogena-
tion reactions required in oil refining and fine
chemical synthesis routinely use PGMcatalysts.
The three-way catalyst in catalytic converters
used daily in hundreds of millions of cars re-
quires Pt, Rh, and Pd.
EAM catalysts are attractive for many rea-

sons. The “terawatt challenge” (16) for global
energy demand highlights the need to con-
sider the scalability of catalytic materials for
sustainable energy conversions. The crustal
abundance of EAMs exceeds that of PGMs by a
factor of 104 or greater (Fig. 1), leading to costs
that differ by similar ratios. Costs are influ-
enced both by abundance and production rate
(17). The price of amole ofRh reached>$15,000
(USD) as ofNovember 2019,whereas the cost of
most EAMs is typically <$2 per mole (although
for many catalytic reactions, the metal cost
constitutes only a small fraction of the overall
process cost; in the synthesis of pharmaceuti-
cal products, the cost of chiral ligands can
substantially exceed that of the metal). Prices
of PGMs are much more volatile than those of
EAMs. Moreover, EAMs generally have lower
biological toxicity (18), permitting higher lev-
els of residual EAMs than of PGMs in phar-
maceutical products (19). Lastly, the high
abundance of EAMs generally leads to a lower
environmental footprint associated with their
mining and purification relative to PGMs. For
example, the production of 1 kg of Rh generates
>35,000 kg of CO2 equivalent, whereas 1 kg
of Ni produces only 6.5 kg of CO2 equivalent
(Fig. 1, black bars) (20).
Given the appealing attributes of EAMs

noted above, one can ask why PGMs continue
to be so prevalent in many industrial catalytic
processes. The specific reasons vary according
to catalytic application. In general, the require-
ment for effective integration of a catalyst into
an overall process often places stringent con-
straints on the choice of catalyst. For example,
in a fuel cell, the use of fast ion conductivity
inNafion (separating charge transfer between
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anodes and cathodes) requires an acidic pH,
thereby constraining the choice of catalysts
to corrosion-resistant PGMs. Likewise, the
requirement for high-temperature operations
in catalytic converters places stringent re-
quirements on durability, constraining viable
replacement of PGMs. In addition, the high
capital and energy cost of complex downstream
separations imposes a constraint on the mini-
mum selectivity of catalytic processes, and this
consideration may dominate relative to the
cost and environmental footprint of the metal
catalyst itself. These factors motivate the em-
phasis on the development of EAM catalysts
in tandem with new processes that can cir-
cumvent the constraints of current catalytic
technologies.
EAM catalysts are currently successfully

used in several major industrial processes.
The Haber-Bosch reaction, which converts
N2 to ammonia, uses an Fe-based catalyst,
despite the higher performance of a Ru-based
analog (21). Hydrogenation of CO to methanol
is carried out using a Cu/Zn-based catalyst.
Hydrogen is produced fromwater in commer-
cial electrolyzers under basic conditions using
Ni/Fe-based catalysts. Olefin oligomerization
and polymerizations are carried out worldwide
on a tremendous scale using EAMs, dominated
by Ti, Zr, and Cr catalysts. Terephthalic acid
is produced on a large scale through oxidation
of p-xylene using Co and Mn catalysts. Some
industrial processes are catalyzed by both PGMs
and EAMs. For example, hydroformylation is
conducted using either Co- orRh-based catalysts

Bullock et al., Science 369, eabc3183 (2020) 14 August 2020 2 of 10

Fig. 1. Definition of different groups of transition metals. Platinum group metals (PGMs) include Ru, Rh, Pd, Os, Ir, and Pt. The broader term, precious
metals, includes PGMs along with Re, Au, and Ag. Earth-abundant metals (EAMs), sometimes referred to as base metals, include all other transition metals.
(Tc is shown but is radioactive and unstable.) The height of the pillar for each metal indicates its crustal abundance on a log scale; the values range from 5.6% (Fe)
to ~0.001 ppm (Rh, Ir). The black bar on each metal shows (also on a log scale) the relative amount of CO2 produced through mining and purification for each
metal (20), which is markedly larger for PGMs than for EAMs.

Fig. 2. Many of the transformations carried out by enzymatic EAM catalysts are replicated in the
chemical industry by means of PGM catalysts.
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(12), and propane dehydrogenation is carried
out on either Pt- or Cr-based catalysts (22).
Despite these examples, it remains clear that
the scope of EAM catalysis is limited relative
to the remarkable diversity of transformations
catalyzed by EAMs in nature.
Whereas biology provides an invaluable

(although sometimes inscrutable) guide to
the broadened implementation of EAMs, indus-
trial catalysis often requires substrates, reac-
tions, and reaction conditions quite different
from those in biology; PGM catalysts prolif-
erate in this arena. For example, alkenes, which
are derived from petroleum, are processed
quite differently by enzymes than by industrial
catalysts. With the notable exception of Cu-
based ethylene-sensor proteins (23), metal-alkene
complexes are unknown in nature, although
transfer hydrogenations of C=C bonds are
catalyzed by a family of biocatalysts, ene re-
ductases (24). In stark contrast, industrial
catalytic transformations of alkenes include
polymerization, carbonylation, and metathesis;
analogs of these processes are absent from
the biocatalysis repertoire. Instead, alkenes are
often processed in natural systems by attacking
weakened allylic C-H bonds using iron-oxo-
based radicals (25).
Considering the diversity of catalysis per-

formedby biological systems, a central challenge
revolves around coaxing biological macromole-
cules into displaying entirely abiotic reactivity/
selectivity/stability characteristics that have
traditionally been the domain of PGM-based
catalysts. A daunting challenge in designing
bio-inspired catalysts is to identify and replicate
only the parts of the metalloenzyme structure
(first, second, or outer coordination sphere)
that are thought to be required for catalytic
activity, recognizing that while biological re-
action networks must maintain life, their
catalytic functionality may be accessible from
synthetically simpler structures. Replicating the
active site is necessary but not sufficient for
achieving catalysis comparable to that found
in enzymes, as dynamics and conformational
changes often exert a large influence on enzy-
matic catalysis (26).
The considerations discussed above have

fueled burgeoning interest in developing new
EAM-based catalysts. We assert that this en-
deavor is best advanced by establishing the
fundamental science of EAMs that embraces
their particular physical properties and result-
ant catalytic activities. Herein, we put forward
the premise that nature’s blueprint provides
the fundamental principles for vastly expand-
ing the use of EAMs in catalysis. We highlight
the key physical properties of EAMs that dis-
tinguish their reactivity from those of PGMs,
and then seek to understand how the inherent
attributes of EAMs can be embraced, leading
to highly efficient catalysis. Building on that
foundation, we identify compelling opportunities

for the increased use of EAMs in enzymatic,
molecular, and heterogeneous catalysis.

The origins of divergent reactivity between
EAMs and PGMs
Electronic structure

The distinctive reactivity profiles of EAMs
relative to PGMs originate from fundamental
differences arising from periodic trends of the
elements (27). In particular, 3d orbitals extend
to a lesser extent beyond the 3s and 3p orbitals
(28), leading to attenuated orbital overlapwith
bonding partners, relative to the corresponding
4d and 5d counterparts. This overlap deficit has
a considerable impact on the electronic struc-
ture of 3dmetal-based catalysts. Formolecular

TMcomplexes, the overlap deficit leads tomore
ionic character in metal-ligand bonds and a
small frontier d-orbital splitting (Fig. 3, top),
stabilizing high-spin electronic configurations.
High spin configurations are extremely rare
(29, 30) among 4d and 5d TM complexes owing
to their much higher frontier orbital splitting
energies (Fig. 3, top). Similar phenomena are
observed for extended solids: Attenuated orbital
overlap between 3d metal atoms leads to a
diminished spread in the d-band energies and
a corresponding increase in the d-band center
of 3d metals relative to the 4d and 5d counter-
parts (Fig. 3, top). The prevalence of high-spin
electronic configurations among 3d TMs
has important implications for reactivity (31).
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Fig. 3. Physical properties of EAMs versus PGMs, illustrating substantial differences that lead to
divergent reactivity that can be exploited in catalysis. Data are from (1, 38, 124).

RESEARCH | REVIEW
on A

ugust 13, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


Homogeneous PGM catalysts typically cycle
through two-electron processes, including famil-
iar examples of oxidative addition/reductive
elimination of RhI/RhIII and Pd0/PdII. In con-
trast, 3d TM complexes more readily engage
in single-electron bond activation reactions,
including M-X bond homolysis. Additionally,
the availability of multiple spin states among
EAMs can lead to multistate acceleration of
certain reactions.

Thermochemistry

The differences in the electronic structures
of EAMs and PGMs are manifested in the
thermochemistry of interactions of metals
with ligands, reactants, products, and inter-
mediates. The classical Sabatier principle states
that an optimal catalyst should bind inter-
mediates neither too strongly nor too weakly,
essentially a “Goldilocks” effect (21). In general,
bonding to 3d TMs in molecular complexes is
weaker relative to 4d/5d TM centers with the
same ancillary ligand environment. For exam-
ple, the bond dissociation energies of the M-H
bond in MH(h5-C5H5)(CO)2 are 68 kcal/mol
(32), 77 kcal/mol (32), and ≥82 kcal/mol (33)
for Fe, Ru, and Os, respectively; for MH(CO)5,
the values are 68 kcal/mol and 75 kcal/mol for
Mn and Re, respectively (34). Additionally,
the greater extension of the d-orbitals of the
second and thirdTMsalso provides for stronger
back-bonding interactions with p-accepting
ligands, such as CO and olefins, increasing
their binding strength. Intermediates bear-
ing such ligands are critical in a number of
industrially important processes such as
hydroformylation.
The differences in metal bonding thermo-

chemistry are also mirrored in changes in the
reduction potentials of metal ions. PGMs are
commonly referred to as noble because of their
resistance to oxidation, a reflection of their
much higher reduction potentials and of the
lower O-atom affinities of 4d and 5d metals
(Fig. 3, middle, black) relative to 3d TMs (Fig.
3,middle, blue). For example, whereas the PtII/0

and PdII/0 reduction potentials are 1.18 and
0.951 V, respectively, versus the standard hydro-
gen electrode (SHE), the corresponding NiII/0

reduction potential, –0.26 V, is lower by more

than 1 V. Likewise, Pt (111) and Pd (111) surfaces
have anO-atomaffinity of ~0.5 eV (12 kcal/mol),
whereas Ni (111) surfaces have an O-atom af-
finity of ~4 eV (92 kcal/mol) (Fig. 3). Because
these baseline reduction potentials correspond
to interconversion of the metallic solid and
aquated metal ions, they are influenced by
the coordination, electrostatic, and hydrogen-
bonding environment of the metal center (35).
Because of these effects, the active-site EAMs
in metalloenzymes span a wide range of po-
tentials (2) that differ substantially from their
baseline values. Similar potential ranges can
be accessible through changes in the coordi-
nation environment of synthetic coordination
compounds (36).
The differences in reduction potential be-

tween EAMs and PGMs are of central impor-
tance in electrocatalysis, where electron flow
drives the conversion of reactants to products.
For example, the very positive potential for
oxidizing Pt allows it to avoid corrosion at the
oxidizing potentials of the O2/H2O couple in
fuel cells, making it the only currently viable
corrosion-resistant cathode catalyst for PEM
fuel cells. To achieve similar feats, enzymes
such as multi-copper oxidases, laccases (3, 4),
and cytochrome c oxidase (37) use an ensemble
of metal centers organized within the protein
environment that markedly alters their redox
properties and oxophilicities.

Kinetics

Owing to their weaker metal-ligand bonds,
complexes of the 3d metals are much more
labile than their 4d and 5d counterparts (Fig. 3,
bottom). The rate accelerations can be extra-
ordinary: Exchange of a water ligand on a high-
spin Fe(III) center is faster than on Ru(III)
by a factor of 108 (38). We emphasize that
lability is a kinetic phenomenon; many labile
complexes are thermodynamically stable. Al-
though typically viewed as an impediment to
understanding catalytic reactivity, the higher
lability of EAMs can, in principle, be beneficial
for catalysis. Turnover frequencies are often
strongly influenced by the rates of association
and dissociation of reactants and products,
a manifestation of the Sabatier principle (21).
Thus, the inherently higher rate of ligand ex-

change on the 3d TMs offers the opportu-
nity for rapid catalysis. Two key properties
sought are kinetic stability of the metal-
supporting ligand ensemble and labile coor-
dination sites with appropriate affinities for
substrates. The challenge arises from the fact
that lability of EAMs can also lead to the
rapid exchange of supporting ligands that tune
the local electronic structure and reaction en-
vironment of the metal center. To circumvent
problems with lability in molecular complexes,
polydentate ligands are often used to strongly
sequester the metal ion while preserving one
or more coordination sites for catalysis. Con-
sequently, tridentate or tetradentate ligands
are ubiquitous in catalysis by synthetic 3d TMs
relative to PGMs, so as to overcome the in-
herent differences in lability relative to PGMs.
The premier examples of multidentate lig-
ands in biocatalysis are porphyrins, where
four metal-nitrogen bonds confer substan-
tial kinetic inertness.
In extended solids, the kinetics of substitu-

tion at EAMs also play a central role in the
longevity of catalysts. The weaker M-lattice
bonding in mid- to late 3d metal and metal
oxide materials contributes to their high pro-
pensity to sinter, restructure, become amor-
phous, and corrode under catalytic conditions,
relative to 4d and 5d analogs. A richer under-
standing of how to control metal lability in
extended solids is essential for creating robust
EAM catalysts, particularly for harsh reaction
environments.

Computational insights

Much of our physical understanding of EAMs
has been enhanced through consistent bench-
marking between experiment and theory. A
comprehensive understanding of EAM reac-
tivity will require a refined understanding of
electronic structure, thermochemistry, and
kinetics. Yet current theoretical tools that
are effective at modeling multiconfigurational
electronic structure commonplace amongEAMs
are often ineffective for predicting thermochem-
ical and kinetic properties (39). This impasse
results from the enormous computational
expense required to calculate the properties
of EAMs that reside in shallow potential
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Fig. 4. The utility of enzymatic catal-
ysis can be enhanced by expanding
active-site reactivity to abiotic sub-
strates, minimizing the enzymatic
scaffolding, and enabling operation
in nonphysiological reaction envi-
ronments. Images were obtained from
PDB code 1W0E, cytochrome P450.
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energy wells with a diversity of available spin
configurations.
The widely used density functional theory

(DFT) has strengths andweaknesses, and both
are highlighted in modeling catalysis by EAMs.
In some cases, trends can be identified readily
using simple basis sets and commonly used
functionals. Often complementing experimen-
tal results, theoretical studies can identify rate-
determining steps, assign vibrational bands,
and determine redox potentials. Useful ther-
mochemical predictions of energies can often
be obtained, even if specific spin states may
not be easily determined reliably. Spin transi-
tions andd-orbital splitting of EAMs are difficult
to treat because states that are very similar in
energy occur frequently with EAMs.
Machine learning (ML)–basedmethods have

generated enormous recent interest in the com-
putational analysis of catalysis (40). In a typical
application of ML, large datasets (often result-
ing from thousands of DFT calculations) are
used for statistical regression analyses withML
methods to identify the most accurately pa-
rametrizedmodel for the dataset. Awell-trained
MLmodel should successfully interpolatewithin
the chemical/materials space of the training
data and be useful for screening molecular/
material properties for hypothetical homoge-
neous (41, 42) and/or heterogeneous (43, 44)
catalyst active sites across larger regions of
chemical and materials space than are acces-
sible with DFT calculations alone. Complemen-

tary to ML approaches, theoretical schemes
such as alchemical perturbation DFT allow
rapid screening of adsorbate binding energies
(45) with minimal precalculated reference data
and low computational cost.

Emerging opportunities for catalytic reactivity
of EAMs

Recent progress in the design of EAM catalysts
demonstrates their potential in many reac-
tions that traditionally use PGMs, although
they often fall short of the performance of
PGM catalysts on one or more benchmarks
(46): activity, selectivity, lifetime, or energy
efficiency. Yet EAM-based enzymes have evolved
in nature to facilitate an impressively diverse
array of reactions. We assert that nature’s
blueprint provides invaluable guidance for
frontier areas of exploration in EAM catalysis
that takes advantage of the inherent electronic
structure, thermodynamic, and kinetic charac-
teristics of EAMs. We discuss below how to
use biologically inspired approaches to design
EAM catalysts with enhanced performance
in the context of enzymatic, molecular, and
heterogeneous reactivity.

Enzymatic catalysis

Biological catalysts with TM active sites feature
exclusively EAMs; a central challenge revolves
around modifying enzymes to display abiotic
functions (Fig. 4). Manymetalloenzymes display
promiscuous activities (47), a feature that

provides a diversity of reactivity for the dis-
covery of abiotic enzymatic catalysis. There
has been increasing recognition that biological
cofactors featuring EAMs are active, albeit at a
low level, for a wide array of abiotic trans-
formations that are commonly carried out by
synthetic PGM-based catalysts. For example,
carbene insertion reactions, which enable the
rapid elaboration of simple organic feedstocks
into fine and pharmaceutical chemicals, are
catalyzed efficiently by synthetic Rh-based
catalysts (48). Remarkably, many native hemo-
proteins also display low-level activity for these
same reactions, and directed evolution of these
enzymes has led to a family of biocatalysts
(49) with excellent activity and selectivity for
carbene insertion into C-H, N-H, and Si-H
bonds. The activity and selectivity of these
evolved metalloproteins now rival and even
exceed those of Rh-based catalysts. One recent
study (50) showed that hemoproteins can be
repurposed to catalyze carbon-carbon bond for-
mation by insertion of a carbene, rather than
oxygen, into a C-H bond—a reaction tradition-
ally dominated by PGMs (51). Implementing the
blueprint from nature requires precise control
of the local environment by modifying the
active site to bind an abiotic reactant, such as a
carbene, while minimizing the binding of the
native substrate (i.e., O2) with exquisite selec-
tivity (52). The fundamental workflow of protein
engineering—identifying promiscuous reactiv-
ity for abiotic substrates, then using protein-
engineering tools to maximize performance—
serves as a valuable blueprint for further
advances in catalysis of abiotic reactions.
Continued progress to expand the palette of
enzymatic catalysis will benefit from the devel-
opment of newmethods for identifying enzyme
candidates and strategies for accelerating directed
evolution and selection of high-performance
mutant enzymes.
The macromolecular scaffolds that house

EAM active sites in enzymes are critical to their
function but invariably afford high–molecular
weight catalysts. For commodity-scale catalysis,
the density of active sites is a critical determi-
nant of space-time yield, imposing constraints
on overall performance. In some cases, sub-
units of enzymes can be discarded without
greatly lowering catalytic efficiency; this sug-
gests that there is ample opportunity for en-
hancing active-site density without necessarily
decreasing the turnover frequency or selectivity
of each site. In other cases, mutation of a sin-
gle amino acid remote from the active site can
appreciably alter catalytic performance (53).
Reliable methods for discriminating the por-
tions of the enzyme scaffold that are essential
for catalysis from those that are not necessary
will facilitate the wider use of enzymatic EAM
catalysis for large-scale industrial processes.
Many abiotic reactions of critical impor-

tance are ideally performed under conditions
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Fig. 5. EAM enzymes provide the blueprint for molecular EAM catalyst design. The example shown is
[Fe-Fe]-hydrogenase (center; PDB code 5LA3). (A) Proton relays positioned proximate to EAM active
sites (blue highlight) are deployed in molecular catalysts for hydrogen production (125). (B) Multimetallic
cluster active sites catalyze energy conversion reactions (95). (C) Transport to active sites via enzyme
channels can be mimicked in porous molecular materials (126). (D) The density of available electronic states
is increased through redox-active ligands that can steer reactivity in synthetic systems (90). Me, methyl; tBu,
tert-butyl; iPr, isopropyl; Ph, phenyl.
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(temperature, pressure, pH) that are far re-
moved from themild conditions of biology. For
example, catalysts in fuel cells and electrolyzers
often operate at the extremes of pH to facilitate
ion conduction, and many heterogeneous cata-
lysts operate at elevated temperatures toenhance
the reaction rate and facilitate heat integra-
tion. Biological systems offer opportunities for
adapting enzyme catalysis to extreme reaction
conditions. In particular, thermophilic archaea
sustain life processes at temperatures exceed-
ing 100°C and at extremes of pH (54). It has
longbeen recognized that someenzymesdisplay
enhanced catalytic activity in organic solvents
(55), yet there remains limited fundamental
understanding of the characteristics of enzymes
that engender persistent activity under these
conditions. Additionally, whereas abiotic reac-
tivity modes can be screened using abiotic
reagents, screening for enzymatic performance
under abiotic reaction conditions is more dif-
ficult because the biological replicationmachinery
operates within a narrow domain of conditions.
Strategies for driving directed evolution within
extremophile hosts, and a deeper understand-
ing of the factors that contribute to protein
stability, provide plentiful opportunities for
extending the rich EAM catalytic reactivity of
enzymes toward the harsher conditions often re-
quired for thermal and electrochemical catalysis.

Molecular catalysis

Themodernmolecular synthetic toolkit affords
virtually unlimited scope for tailoring the pri-
mary, secondary, and outer coordination spheres
around a molecular EAM active site. Several
areas of exploration leverage this synthetic
capability to embrace the distinctive physical
properties of EAMs (Fig. 5).
EAM active sites in nature are subject to

exquisite tuning by the arrangement of prox-
imal amino acid residues and cofactors, as
well as by the enzyme channels that gate the
transport of reactants and products in and
out. Similarly, achieving precise control over
the local environment and transport in syn-
thetic molecular EAM catalysts is critical for
realizing their full potential. The ability to syn-
thesize increasingly sophisticated ligands pro-
vides control of steric and electronic attributes,
as demonstrated by remarkable progress in
asymmetric hydrogenations, which are used
extensively to achieve the enantioselectivity
required in the preparation of pharmaceut-
icals and agrochemicals. This field has been
dominated by Rh- and Ru-based catalysts with
chiral diphosphines (56), but recent examples
show that EAM catalysts can offer outstanding
selectivity. For example, an Fe complex cata-
lyzes the asymmetric transfer hydrogenation
of ketones with performance superior to that
of Ru catalysts (57), and a Co complex catalyzes
the asymmetric hydrogenation of the C=C
bond of enamides (58).

In addition to modifications of the ligands
bound directly to the metal (primary coordina-
tion sphere), the environment of molecular
catalysts can be tuned by positioning secondary
coordination sphere substituents, such as Lewis
acids (59), positively charged groups (60–62),
hydrogen bond donors (63), and pendant amines
functioning as proton relays (64–68) (Fig. 5A)
proximal to the EAM center. These strategies
have enhanced the rates of molecular EAM
catalysis of electrochemical H2 evolution (64–66),
H2 oxidation (65, 66, 68), CO2 reduction (60), and
O2 reduction (69). Because the redox reactivity
involves coupling of electron flow and bond
rearrangement, the secondary coordination
sphere substituentsmust be precisely positioned
to foster optimal cooperativity. For example, the
rates of proton-coupled electron transfer (70, 71)
can be sensitive to sub–angstrom-level changes
in the distance between proton donor and
acceptor (72). Cooperativity between theprimary
and secondary coordination spheres in enzymes
is achieved through the dynamic flexibility
of the protein scaffold (26), a property that is
difficult to recreate systematically in synthetic
EAM catalysts. Strong electric fields can in-
fluence enzyme catalysis (73) by manipulating
the energies of intermediates or transition
states, thereby changing the rates and selec-
tivity. Computations offer the opportunity to
prescreen the impact of positioning of the
secondary coordination sphere moieties; such
studies couldmotivate synthetic efforts toward
optimized secondary coordination sphere con-
trol in EAM catalysis.
Controlling transport to EAM active sites is

difficult to achieve with freely diffusing small
molecules, but improved transport environ-
ments can be created by anchoring molecular
EAM active sites on the surfaces of, or within
the pores of, extended solid host materials
including, for example, graphitic carbon,micro-
porous silica, and metal-organic frameworks
(MOFs) (74). Solid-supported site-isolated EAMs
have been used to catalyze a wide array of
reactions; they benefit from structural con-
straints that prevent inhibitory bimolecular
reactivity between metal centers while facili-
tating catalyst separation and recycling. For
thesemolecularmaterials, the extended lattice
can serve as scaffolding to incorporate secondary
coordination sphere elements proximate to the
embedded active site, and the pore structure
and dimensions can be used to gate the trans-
port of reactants and products to and from
the active site. MOFs with EAM active sites
have been deployed to carry out, for example,
photocatalytic CO2 reduction (75), ethylene
hydrogenation (76), oxidation of alcohols
(77), olefin cyclopropanation (78), arene C-H
borylation (79), tandem oxidation and function-
alization of styrene (80), and selective oxidation
of methane to methanol (81). Enzymes often
feature disparate channels that transport each

reactant and product molecule in different
directions, with the EAM active sites precisely
positioned at the junction of these conduits.
Similar precision has been difficult to achieve
in synthetic systems, and efforts toward con-
structing molecular materials with active sites
at the intersection of multiple transport con-
duits could substantially advance selectivity in
EAM catalysis.
Because of their low field strengths, EAM

complexes have a propensity to undergo single-
electron transfer pathways (82). The control
levers noted above are particularly important
for embracing and controlling radical reactiv-
ity. Because of their smaller d-orbital splitting
and weaker spin-pairing energy, EAMs tend to
react in enzymes through radical intermedi-
ates. Controlled radical reactions are central to
biological detoxification by heme centers in
cytochrome P450 enzymes, the synthesis of
DNA precursors mediated by ribonucleotide
reductase, and many other critical transfor-
mations mediated by cobalamins and radical
SAMenzymes (9). By controlling the reactivity of
Co(III) carbon-centered radicals generated from
Co(II) porphyrin complexes, eight-membered
rings have been produced from ring-closing
reactions; this strategy provides attractive syn-
thetic methods for reactions that traditionally
required precious metal catalysts (83). Coop-
erative catalysis using EAM complexes of two
metals, Ti and Cr, has provided a highly selective
route to anti-Markovnikov alcohols through
ring-opening of epoxides (84). This hydrogen-
ation of epoxides is unusual because at dif-
ferent steps of the mechanism, a chromium
complex transfers an electron, a hydrogen atom,
and a proton.
Aerobic oxidation of primary alcohols to

aldehydes and H2O2 is catalyzed in natural
systemsby galactose oxidase, a copper-containing
enzyme. A bio-inspired synthetic binuclear cop-
per complex exhibiting metal-ligand cooperative
reactivity catalyzes the oxidation of primary
alcohols using O2 from air (85). Similar to the
acceptedmechanism for galactose oxidase, the
rate-determining step of the synthetic system
is proposed to involve hydrogen atom transfer
from a C-H bond of the alcohol to the oxygen-
centered radical bound to Cu.
Many of the EAM active sites that occur

naturally, particularly those carrying out multi-
electron redox transformations, featuremultiple
metal centers linked to each other in cluster
active sites or metal centers coupled to redox-
active cofactor ligands. The presence of these
additional metals and redox-active ligands ex-
pands the number of available redox states ac-
cessible over a range of potentials. This increased
density of electron states serves to buffer redox
changes at the metal center that binds and
activates the reactant, thereby lowering the
energy barrier to multielectron transforma-
tions. Harnessing the full power of EAMs
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in synthetic catalysts will require master-
ing the interactions of EAM centers with
both metal-based and organic-based redox
active ligands.
EAMs with redox-active ligands (86–88)

catalyze a wide variety of reactions, including
cleavage of C-C bonds (89), cycloadditions (90),
oxidation of alcohols (91), and aminations (92).
Further systematic deployment of redox-active
ligands in EAM catalysis will benefit from
general design rules for independently tuning
metal-based and ligand-based redox levels to
control the thermochemistry of elementary
reaction steps. These ligands also play a key
role in electrocatalysis atmolecular active sites
by providing a reservoir for accumulating redox
equivalents that are cumulatively discharged to
promote multielectron reactions including, for
example, CO2 reduction (93) and O2 reduction
(94). An improved understanding of how to
design systems with enhanced metal/ligand
redox cooperativity would facilitate the design
of more efficient (electro)catalysts.
Coupling between the metal binding site

and one or more metals can also increase the
density of electronic states available for a
multielectron transformation. Bimetallic and
multimetallic EAM catalysts have been used for
CO2 reduction (Fig. 5B) (95, 96), cycloadditions
(Fig. 5D) (90), dehydrogenation of formic
acid (97), and reduction of NO2 (67) or O2 (98).
Further systematic development of multime-
tallic systems in EAM catalysis will benefit
from a better understanding of how to stabilize
the cluster against irreversible fragmentation
while retaining the capacity to rapidly break
and regenerateM-MorM-E-M (E= S, O) bonds
during a catalytic cycle.
Understanding molecular EAM catalysts in

systems with an increased density of states
requires new spectroscopic tools and com-
putationalmethods (99).Whereas current com-

putational methods effectively model weakly
correlated closed-shell singlets, new methods
are needed for accurately modeling open-shell
species, and deconvolution of spin-state pop-
ulations is required to accurately model the
multiconfigurational electronic structure of
metal clusters and metal complexes involving
redox-active ligands (100). Open-shell systems
are often paramagnetic and intractable to char-
acterize by routine nuclear magnetic resonance
methods; emerging improved spectroscopic
tools for characterizing paramagnetic species
are advancing mechanistic understanding of
these systems (101–103).

Heterogeneous catalysis

Heterogeneous catalysis occurs on the surfaces
of extended solids. Although these extended
solids may bear little direct structural resem-
blance to active sites in nature, the principles
that define EAM catalysis in enzymes provide
valuable leads toward their greater utility in
heterogeneous catalysis.
Similar to the catalytic cooperativity in

nature, enhanced catalytic performance can
emerge from extended solids that incorpo-
rate multiple EAMs acting cooperatively. For
example, by combining the different binding
strengths of Ti andCu towardhydrogen, alloying
Ti and Cu leads to hydrogen evolution reactivity
similar to that of PGMs (104). Analogously,
mixed oxyhydroxides containing Fe, Co, and
W catalyze oxygen evolution in an alkaline
environment (105); the cooperative interactions
of even trace amounts of Fe can profoundly
promote oxygen evolution activity on NiOOH
(Fig. 6B) (106). Considering the inherent lability
of EAMs, improved characterization tools are
needed to track the time dependence of surface
restructuring in multimetallic EAM catalysts.
Additionally, multimetallic EAM oxide-based
catalytic materials are challenging to model

with conventional computational methods
(107); detailed mechanistic understanding of
these systems would benefit from new compu-
tational tools that effectivelymodel compositional
heterogeneity and extend multiconfigurational
methods to periodic solids. Given the enormous
compositional diversity available in multime-
tallic solids, machine learning tools offer the
potential to explore multidimensional reaction
landscapes rapidly.
Historically, EAM heterogeneous catalysis

focused predominantly on the reactivity of
metal or metal oxide phases, the two endpoint
thermodynamic sinks under reducing or oxi-
dizing conditions, respectively. In contrast,many
EAM active sites in nature are hosted within
highly evolved combinations of sulfur, nitrogen,
and carbon in the primary coordination envi-
ronments, suggesting an appealing opportunity
to exploit new types of heterogeneous catalysts.
Relative to the O atoms in oxide host lattices,
the greater orbital extension and/or energetic
match of the p-orbitals in C, N, P, and Swith the
d-orbitals of EAMs leads to substantial changes
in the band structures of chalcogenides (108, 109),
pnictides (110–112), and carbides (110, 113),
potentially endowing these EAM catalysts with
enhanced activity relative to the correspond-
ing metal or oxide phases. For example, metal
sulfide and phosphidematerials have emerged
as potent catalysts for electrochemical hydro-
gen evolution (109), and EAM carbides have
been shown to be highly selective for hydro-
deoxygenation of biomass-derived molecules
(114). Considering the vast phase space availa-
ble among chalcogenides, pnictides, and car-
bides, there is ample opportunity to discover
new EAM catalysts that take advantage of
environments akin to those found in nature.
Progress toward these goals will require ad-
vances in the synthesis ofmaterials with tunable
phase and nanostructure at sufficient scales for
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Fig. 6. EAM sites in enzymes such as nitrogenase provide the blueprint for heterogeneous EAM catalyst design. (A and B) Multimetallic cooperativity in
nature [green in (A)] can guide the design of mixed metal-oxide oxygen evolution catalysts (B) (106). (C) The more covalent metal-ligand bonding in natural systems
[Fe/Mo in (A)] parallels the more covalent chalcogenide (108) and graphitic carbon host lattices (127) in synthetic catalysts. (D) The function of the fine-tuned
catalyst microenvironments in enzymes can be replicated in synthetic catalysts through micro- and mesostructuring (128).
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catalytic applications. In addition, because these
materials are typically metastable relative to
their correspondingmetal or oxide phases, fun-
damental insights are needed to understand
how the surfaces of these materials undergo
reconstruction under sustained catalytic turn-
over (115). Surface-sensitive operando spectro-
scopic characterization (116) revealing the
chemical stability of these materials is critical
for the design of optimal catalysis.
EAM active sites can also be hosted within

graphitic carbon host lattices. For many dec-
ades, it has been recognized that the high-
temperature pyrolysis of nitrogen and carbon
precursors bound to EAMs such as Fe and Co
can lead to the generation of relatively high-
performance electrocatalysts for the oxygen
reduction reaction in fuel cells (117, 118). These
materials, often referred to as M-N-C catalysts,
are postulated to contain metal nanoparticles
and mononuclear metal sites embedded in
the graphitic framework, with varying ratios
depending on the synthetic conditions (119).
Fe-N-Cmaterials are leading EAM candidates to
replace Pt in fuel cells, and this class ofmaterials
presents an opportunity to create emergent re-
activity fromEAMs through strong interaction
between the EAM orbitals and the electronic
states of graphitic carbons. Despite decades of
work in this area, the local structure of the active
sites remains poorly understood, and the syn-
thetic toolkit for tuning the population of active
sites remains limited. Thus, continued progress
in this area will hinge on new strategies for
better understanding and controlling the inher-
ent distribution of active-site structures present
in these materials.
The microenvironment around the active

site in natural systems is precisely controlled
by preorganizing reactants, imposing a local
electric field, and controlling transport to and
from active sites. The dynamic nature of EAMs
affords opportunities to implement these con-
cepts within heterogeneous catalysts. Many strat-
egies have been used for imposing a particular
microenvironment at the catalyst surface: For
catalysis at solid-liquid interfaces, the compo-
sition of the solvent or electrolyte can be varied;
the catalyst can be designed with appropriate
meso/microstructure to create diffusional gra-
dients at the surface; and the catalyst surface
can be chemically modified (120). Electrolyte
choice, catalystmesostructuring, and chemical
modification have all been applied to tune the
selectivity of Cu-based CO2/CO reduction cata-
lysts (121). The solution environment can also
be used to favor mechanisms for dynamic self-
repair of catalysts; for example, Co ions in solu-
tion promote dynamic stability and self-repair
ofCo-basedoxygenevolution catalysts thatwould
otherwise undergo corrosion (122). Additionally,
thin gas-permeable layers of ionic liquids (123)
and/or molecular promoters could create spe-
cific microenvironments that contain substrate-

binding units proximate to active sites. This
strategy enhances the stability of EAMs prone
to irreversible reconstruction/oxidation, and
may also foster improved selectivity. Despite
the enormous synthetic opportunities in this
area, mechanistic insights into how local micro-
environments tune heterogeneous catalysis are
rare. Although there are many tools for oper-
ando characterization of catalysts, these tools
often only shed light on the primary coordina-
tion environments of EAM active sites. Thus,
improved tools are needed for characterizing
longer-range interactions in the secondary and
outer coordination spheres that define the
microenvironment of the catalyst. Notwith-
standing these formidable challenges, the
tantalizing prospect of creating enzyme-like
three-dimensional active sites on surfaces has
enormous appeal for emerging EAM catalysis.

Outlook

Recent years have seen tremendous growth
in the development and application of EAM
catalysts; however, the fundamental under-
standing of reactivity patterns of these metals
has lagged behind that of PGMs. This disparity
in both understanding and use of EAMs is
attributed to the broader landscape of reactivity
available to EAMs and the smaller historical
investment devoted to the study of them. The
gaps in fundamental scientific knowledge high-
lighted here are intended as a “call to action” to
identify and overcome scientific barriers to
EAM catalysis, based on compelling opportu-
nities that embrace andexploit the characteristic
reactivity of EAMs. Examples of recent discov-
eries of EAMcatalysts that rival, or even exceed,
the performance of PGM catalysts document
the value of identifying design principles for
new classes of catalysts. In addition to catalytic
activity, EAM catalysts should possess long-
term stability and high active- site density for
practical applications. The quest to develop
efficient, sustainable catalysts based on EAMs
benefits from cohesive efforts in synthesis,
operando characterization, mechanistic inquiry,
materials design, and theoretical modeling.
Spurred by recent advances, the collective efforts
of the catalysis community can bring the full
potential of EAM catalysts to realization.
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