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In this work we derive the analyt ical solut ion of the geodesic equat ions of Gödel’s universe for
both part icles and light in a special set of coordinat es which reveals the physical propert ies of this
spacet ime in a very t ransparent way. We also recapitulat e the equat ions of isomet ric t ransport
for point s and derive the solut ion for Gödel’s universe. The equat ions of isomet ric t ransport for
vectors are int roduced and solved. We ut ilize these result s to t ransform different classes of curves
along Killing vector fields. In part icular, we generat e non-t rivial closed t imelike curves (CTCs) from
circular CTCs. The result s can serve as a st art ing point for egocent ric visualizat ions in the Gödel
universe.
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I . IN T RODUCT ION

Gödel’s cosmological solut ion of Einstein’s field equa-
t ions, published in 1949 [1], represents a basic model
of a “rotat ing universe” with negat ive cosmological con-
stant Λ. It s spacet ime curvature originates from a homo-
geneous mat ter dist ribut ion which rotates around every
point with a constant rotat ion rate. The energy momen-
tum tensor consist s of an ideal fluid whose pressure and
mass density are connected to the cosmological constant
and the rotat ion scalar of Gödel’s universe [2].
A part icularly puzzling feature of Gödel’s universe is

the existence of closed t imelike curves (CTCs). Gödel
himself was the first who pointed out their existence
within the framework of general relat ivity, although the
van Stockum dust cylinder model of 1937 already pos-
sesses CTCs [3]. Besides Gödel’s universe and the van
Stockum dust cylinder, numerous other spacet imes have
been found, which allow for t ime t ravel, such as the Kerr
met ric [4], the Got t universe of two cosmic st rings [4, 5],
various wormhole spacet imes [6], or two massive part i-
cles in a (2+ 1)-dimensional ant i-de-Sit ter spacet ime [7].
Over the last decades, these met rics st imulated many dis-
cussions on the philosophical consequences of t ime t ravel
and causality violat ions within the theory of relat ivity. In
part icular, Hawking established the so-called chronology
protect ion conjecture which states that the laws of nature
prevent t ime t ravel on all but sub-microscopic scales [8].
Gödel’s met ric facilit ates analyt ical invest igat ions, be-

cause it is highly symmetric and possesses five indepen-
dent Killing vector fields. Already Gödel himself took
advantage of four isomet ry groups to show that his cos-
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mological solut ion is spacet ime homogeneous [1]. A more
detailed examinat ion of the Killing fields was later per-
formed by Navez [9]. He showed that Gödel’s universe is
endowed with five independent Killing vector fields and
he examined the st ructure of the corresponding Lie al-
gebra. The Killing equat ions for Gödel-type spacet imes
were also discussed by Raychaudhuri et . al. [10]. They
derived the necessary condit ions for Gödel-type met -
rics to inherit at least four independent Killing vector
fields – const itut ing the minimum requirement to sat -
isfy the homogeneity of the spacet ime. Based upon this
work, and independent of Naves’ work [9], Rebouças et .
al. [11] showed that these condit ions lead to five inde-
pendent Killing vector fields. We note that Barrow and
Tsagas [12] invest igated the stability of Gödel’s solut ion
with respect to scalar, vector, and tensor perturbat ion
modes using a gauge covariant formalism.
Gödel’s universe is one of the simplest solut ions of Ein-

stein’s field equat ions which allows for CTCs. As pointed
out by Gödel [1] there exist geometrically very simple
CTCs corresponding to “circular orbit s” in specific co-
ordinates which display the rotat ional symmetry of the
met ric most clearly. These circular orbit s were also dis-
cussed by Raychaudhuri et . al. [10] and Pfarr [13], who
categorized them into CTCs, coordinate dependent past -
t raveling curves (PTCs) and closed null curves (CNCs).
Rosa and Letelier [14] analyzed the stability of CTCs un-
der t iny changes of the energy momentum tensor. How-
ever, these circular orbit s are not the only possible CTCs
in Gödel’s universe, see e. g. Sahdev et . al. [15].
The geodesic equat ions for Gödel’s met ric have been

examined in several works so far. They were first solved
in 1956 by Kundt [16], who took advantage of the Killing
vectors and the corresponding constants of mot ion. In
1961, Chandrasekhar and Wright [17] presented an inde-
pendent derivat ion of the solut ion. They concluded that
there are no closed t imelike geodesics and noted that this
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fact seems to be cont rary to Gödel’s statement that the
“circular orbit s” allow one “to t ravel into the past , or
otherwise influence the past”. Nine years later, Stein [18]
pointed out that the “circular orbit s” of Gödel are by no
means geodesics and that Chandrasekhar’s and Wright ’s
conclusion was incorrect , see also [19]. Other detailed
studies of the geodesics in Gödel’s universe followed by
Pfarr [13] and Novello et . al. [20]. The lat ter provided a
detailed discussion on geodesical mot ion using the effec-
t ive potent ial as well as the analyt ical solut ion. They al-
ready assumed that any geodesic can be generated from
geodesics start ing at the origin by a suitable isomet ric
t ransformat ion.

The understanding of null geodesics provides the
bedrock for ray t racing in Gödel’s spacet ime. Egocent ric
visualizat ions of certain scenarios in Gödel’s universe can
be found in our previous work [21]. There, we presented
improvements for visualizat ion techniques regarding gen-
eral relat ivity. Furthermore, finite isomet ric t ransforma-
t ions were used to visualize illuminated objects. This
method was technically reworked and improved in [22]
and resulted in an interact ive method for visualizing var-
ious aspects of Gödel’s universe from an egocent ric per-
spect ive. In that work, we used the analyt ical solut ion
to the geodesic equat ions and a numerical integrat ion of
the equat ions of isomet ric t ransport .

This paper is organized as follows. In Sec. II A, we
review several basic characterist ics of Gödel’s universe
to make this work self-contained. The equat ions of mo-
t ion are summarized and the constants of mot ion are ex-
pressed with respect to a local frame of reference. All
Killing vector fields are specified as well. We follow the
notat ion of Kajari et . al. [2] because we regard their
choice of a set of coordinates as highly suitable and easily
interpretable. Sec. III details the solut ion to the geodesic
equat ions for t imelike and light like mot ion. After dis-
cussing the special case of geodesics start ing at the ori-
gin, we int roduce the general solut ion and explain under
which circumstances t ime t ravel on geodesics is possi-
ble. In Sec. IV, we derive analyt ical expressions on finite
isomet ric t ransformat ions along Killing vector fields for
points as well as direct ions. All result s are then used
in Sec. V to isomet rically t ransform init ial condit ions
for geodesics to map the special solut ion of the geodesic
equat ions onto the general solut ion. Also, the Gödel hori-
zon is calculated for different observers at rest with re-
spect to the rotat ing mat ter and depicted for our choice
of coordinates. Finally, we carry out a detailed analysis of
circular CTCs and use finite isomet ric t ransformat ions to
generate a class of non-circular CTCs. In the appendix,
we describe several details on the solut ion to the geodesic
equat ions and equat ions of isomet ric t ransport for easier
reproduct ion of our result s by the reader. The last sec-
t ion in the appendix provides interest ing est imates of our
result s using ast ronomical data.

I I . G ÖDEL’S UN IVER SE

A . B asic p r op er t ies

For the reader’s convenience we recapitulate a few ba-
sic features of Gödel’s universe. For details we refer, e. g.,
to the work of Kajari et . al. [2] or Feferman [23]. The line
element of Gödel’s universe in cylindrical coordinates [2],
with the velocity of light c and the Gödel radius rG , reads

ds2 = − c2dt2 + dr 2

1 + (r �rG )2 + r 2 �
1− (r �rG )2�

dϕ2

+ dz2 − 2
√

2r 2c
rG

dtdϕ� (1)

when using a posit ive signature of the met ric tensor, i. e.
sign(gµν )= + 2. This convent ion will be used throughout
the paper. Furthermore, init ial condit ions for posit ions
and direct ions are always denoted by a lower index of
zero, i. e. xµ (0) = xµ

0 and uµ (0) = uµ
0 .

Gödel’s universe describes [1] a homogeneous universe,
in which mat ter rotates everywhere clockwise with a con-
stant angular velocity relat ive to the compass of inert ia.
It can easily be shown that , in this reference frame, mas-
sive part icles with zero init ial velocity propagate only in
t ime. Hence, these cylindrical coordinates are corotat ing
with the mat ter.

x

y

r G

FIG. 1: Light like geodesics in the (xy)-subspace depict ed in
pseudo-Cart esian coordinat es (cf. F ig. 2 in [2]). P hotons
emit t ed at the origin propagate counterclockwise into the fu-
ture, reach a maximum radial dist ance of r G , and then return
to the origin. It can be shown that there exist s no causality
violat ion for arbit rary light like or t imelike geodesics st art ing
at the origin.

The Gödel radius rG can be ident ified [2] with the ro-
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tat ion scalar

ΩG =
√

2c
rG

� (2)

making it inversely proport ional to the angular veloc-
ity of the rotat ing mat ter. Fig. 1 depict s several light -
like geodesics start ing at the origin. Photons reach the
Gödel radius, and their orbit s are closed in the (xy)-
subspace [33]. Thus rG const itutes an opt ical horizon
beyond which an observer located at the origin cannot
see, because photons start ing with r 0 > rG do not reach
the origin. Due to the stat ionarity of Gödel’s met ric,
there exist s no gravitat ional redshift ; only Doppler shift
due to relat ive mot ion arises.
Comparable to asymptot ic flat spacet imes, we can find

an interpretat ion for this set of coordinates. Because the
met ric converges to the Minkowski met ric of flat space-
t ime (in cylindrical coordinates) for r → 0, we denote
this set as the coordinates of an observer rest ing at the
origin[34]. Coordinate t ime t and proper t ime τ of an
observer at the origin are ident ical. Hence, if we want to
make a statement on measurements performed by an ob-
server, it is very convenient if he rest s at the origin. Due
to the homogeneity of Gödel’s universe we can t ransform
any physical situat ion in such a way that an arbit rary
observer is then located at the new origin. The mathe-
mat ical details are provided in Sec. IV.
We denote an observer rest ing at the origin by O , other

rest ing observers by A �B �C and t raveling observers (or
photons) by T . Fig. 2 illust rates a possible CTC. A trav-
eler T start s at the origin, accelerates beyond the horizon,
t ravels along a circular PTC into the past , reenters the
horizon, and then reaches the origin at the same coor-
dinate t ime of departure. The result ing curve is a non-
circular CTC. Time t ravel is only possible beyond the
horizon, because light cones intersect the plane of con-
stant coordinate t ime for all r > rG . Hence, a t raveler
can t ravel into his own future but into the past of the
observer O .

B . E qu a t ion s of m ot ion

The geodesic equat ions

ẍµ + Γµ
ρσ ẋρẋσ = 0 (3)

govern the propagat ion of light or freely moving part icles.
In this sect ion, any derivat ive is with respect to an affine
parameter λ (for light like geodesics) or with regard to
proper t ime τ (for t imelike mot ion). Because these equa-
t ions are of second order in λ or τ, respect ively, init ial
condit ions for posit ion and direct ion have to be specified.
If a massive part icle is moving on an arbit rary t imelike
worldline xµ (τ), a four-accelerat ion

aµ = ẍµ + Γµ
ρσ ẋρẋσ� (4)

FIG. 2: Chronological st ructure of Gödel’s universe. In this
xyt-diagram a possible t imelike worldline is depict ed. A t rav-
eler T could move on this curve, propagat ing in his own local
future at any given point . Beyond the horizon (gray cylinder)
he t ravels into the past of an observer locat ed at the origin.
The worldline it self is a CTC, because the t raveler depart s
from and returns to the origin at the same coordinat e t ime t .
For an observer at t he origin, coordinat e t ime and proper t ime
coincide. The figure illust rat es Gödel’s original idea to prove
that there exist CTCs through every point in spacet ime [1].

must act on the part icle. An arbit rary vector X along
this worldline (with tangent uµ ) will be Fermi-Walker
t ransported according to

0 = dX β

dτ + X γuαΓβαγ+
1
c2

�
gγσuσaβ − gγσaσuβ

�
X γ� (5a)

A vector on a geodesic will be parallel-t ransported using
aµ = 0 in the equat ions above.
To derive the equat ions of geodesical mot ion we here

use the Lagrangian formalism. The Lagrangian L =
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gµνuµ uν for Gödel’s met ric (1) reads

L = − c2ṫ2 + ṙ 2

1 + (r �rG )2 + r 2 �
1 + (r �rG )2�

ϕ̇2

+ ż2 − 2
√

2r 2c
rG

ṫϕ̇� (6)

Addit ionally, the const raint L = gµνuµ uν = κc2 has to
be fulfilled. The type of a geodesic is determined by the
parameter κ. For t imelike geodesics we have κ = − 1,
whereas light like geodesics require κ = 0.
Using the Euler-Lagrange equat ions of mot ion one

finds three constants of mot ion ki = ∂L�∂ ẋ i , where

k0 = − cṫ −
√

2r 2

rG
ϕ̇� (7a)

k2 = r 2 �
1− (r �rG )2�

ϕ̇ −
√

2r 2c
rG

ṫ� (7b)

k3 = ż� (7c)

The quant it ies k0, k2 and k3 represent the conservat ion of
energy, angular momentum, and z-component of momen-
tum, respect ively. These three constants can be solved
for ṫ�ϕ̇ and ż. Subst itut ing the result of this calculat ion
in eq. (6), the Lagrangian becomes solely dependent on
r and ṙ . Using the const raint L(r�ṙ ) = κc2 we can solve
this equat ion for ṙ . We then obtain the equat ions of mo-
t ion for both photons and massive part icles in the form

cṫ = − k0
1− (r �rG )2

1 + (r �rG )2 −
√

2k2
rG [1 + (r �rG )2]� (8a)

ṙ 2 = (κc2 − k2
3)

�
1 + (r �rG )2�

− k2
2

r 2 +

2
√

2k0k2
rG

+ k2
0

�
1− (r �rG )2�

� (8b)

ϕ̇ = k2 −
√

2r 2k0�rG
r 2 [1 + (r �rG )2] � (8c)

ż = k3� (8d)

C . In it ia l con d it ion s

Now, we will formulate the init ial condit ions of arbi-
t rary geodesics using the constants of mot ion. These ini-
t ial condit ions will be expressed with respect to a local
frame of reference, because this formulat ion facilit ates
statements on measurements done by arbit rary observers.

1. Local frame of reference

Any vector u can be expressed with respect to a par-
t icular coordinate system or a local frame of reference
{ e(a) : a = 0�1�2�3} , i. e.

u = uµ∂µ = u(a) e(a) � (9)

Greek indices denote vectors in coordinate representa-
t ion, whereas Lat in indices in round brackets are used
for vectors expressed in a local frame. To obtain an or-
thonormal system the condit ion

g(e(a) �e(b) ) := gµνeµ
(a) e

ν
(b) = η(a) (b) � (10a)

η(a) (b) = diag(− 1�1�1�1)� (10b)

has to be fulfilled, where the t ransformat ion mat rices sat -
isfy

eµ
(a) e

(a)
ν = δµ

ν � (11)

We choose the local frame of reference of a stat ic observer
– comoving with the rotat ing mat ter and rest ing with
respect to the cylindrical set of coordinates – and find
that

e(0) = 1
c∂t � (12a)

e(1) =
p

1 + (r �rG )2∂r � (12b)

e(2) = 1
r
p

1 + (r �rG )2

 
−
√

2r 2

rG c ∂t + ∂ϕ

!
� (12c)

e(3) = ∂z� (12d)

This tet rad, however, is not well-defined for r = 0. Be-
cause the angular coordinate is undefined at r = 0,
we cannot formulate init ial direct ions in ∂ϕ -direct ion.
Nevertheless we can exploit the rotat ional symmetry of
this spacet ime. A geodesic can start with uϕ0 = 0 and
then be rotated around the z-axis afterwards to generate
geodesics start ing at the origin and propagat ing in arbi-
t rary init ial direct ion. Another possibility is to t ransform
the tet rad as well as the line element it self to Cartesian
coordinates to avoid the coordinate singularity in r = 0.
Unfortunately, Gödel’s universe loses it s mathemat ical
elegance when considering a set of coordinates which is
not adjusted to the symmetries of the spacet ime.

2. Local formulation of the constants of motion

We can express the constants of mot ion, eq. (7), with
respect to the chosen local frame of reference, eq. (12).
The result for both light like and t imelike geodesics is

k0 = − u(0)
0 � (13a)

k2 = r0
p

1 + (r 0�rG )2u(2)
0 −

√
2r 2

0
rG

u(0)
0 � (13b)

k3 = u(3)
0 � (13c)

The parameter r 0 = r (0) is the init ial radial coordinate of
the geodesic. Because any vector u = u(a) e(a) expressed
in a local system is t reated like any vector in special rela-
t ivity, the sign of u(0)

0 determines whether the geodesic is
evolving into the future (+ ) or into the past (− ). Hence,
k0 is associated with the t ime direct ion.
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D . K illin g vect or s

Solving the Killing equat ions ξµ;ν+ ξν ;µ = 0 for Gödel’s
universe yields five Killing vector fields (cf. [2]), which
read

ξµ
0 =

�
��

1
0
0
0

�
�� � ξµ

2 =

�
��

0
0
1
0

�
�� � ξµ

3 =

�
��

0
0
0
1

�
�� � (14a)

ξµ
1 = 1

q(r )

�
���

r√
2c cosϕ

r G
2

�
1 + (r �rG )2�

sinϕ
r G
2r

�
1 + 2(r �rG )2�

cosϕ
0

�
��� � (14b)

ξµ
4 = 1

q(r )

�
���

r√
2c sinϕ

− r G
2

�
1 + (r �rG )2�

cosϕ
r G
2r

�
1 + 2(r �rG )2�

sinϕ
0

�
��� � (14c)

where

q(r ) =
p

1 + (r �rG )2� (15)

The first three Killing vectors (eq. (14a)) are t rivial, cor-
responding to the constants of mot ion (13), and represent
infinitesimal t ransformat ions in t , ϕ and z, respect ively.
Eqns. (14b) and (14c) reveal that a radial t ransforma-
t ion generally affects t ime and angular coordinate as well.
Note that lower indices in Killing vectors serve to dist in-
guish different vector fields.
Taking advantage of the Killing vectors (14), the gen-

erators of the corresponding Lie algebra read X k =
ξαk ∂�(∂xα ). In this representat ion the st ructure con-
stants Ci j k follow from the Lie brackets [X i �X j ] =
Ci j k X k according to

[X 1�X 2] = − [X 2�X 1] = −X 4� (16a)
[X 2�X 4] = − [X 4�X 2] = −X 1� (16b)

[X 1�X 4] = − [X 4�X 1] = 1
ΩG

X 0 + X 2� (16c)

(16d)

where [X i �X j ] = X i X j − X j X i .
It is worthwhile not ing that the set of generators de-

fined by L 1 = X 4, L 2 = X 1, L 3 = − i (X 2 + X 0�ΩG ) sat -
isfies the angular momentum algebra [L i �L j ] = iεi j k L k ,
as shown by Figuareido [24]. Here i�j �k ∈ { 1�2�3} and
εi j k represents the three-dimensional Levi-Cevita sym-
bol. Moreover, the remaining generators L 0 = X 0 and
L 4 = X 3 commute with L 1, L 2 and L 3. This feature is
used e. g. in the analysis of the scalar wave equat ion in
Gödel’s Universe [24, 25].

I I I . SOLUT ION T O T H E G EODESIC
EQUAT ION S

A . G eod esics for sp ecia l in it ia l con d it ion s

In this sect ion, we will present the solut ion of the
geodesic equat ions for special init ial condit ions. We con-
sider arbit rary t imelike and light like geodesics start ing at
the origin of the coordinate system. Light like geodesics
alone had been considered by Kajari et . al. [2]. Although
the general solut ion to the geodesic equat ions is int ro-
duced in the next sect ion, the special solut ion is neces-
sary to overcome the coordinate singularity in r = 0. In
principle, we could obtain the special solut ion from the
general solut ion by applying the limit r 0 → 0 for the
init ial radial coordinate r 0. Unfortunately, this limit is
complicated to calculate.
The constants of mot ion, eq. (13), simplify for

geodesics start ing at the origin. In part icular, k2 van-
ishes, and the equat ions of mot ion now read

cṫ = − k0
1− (r �rG )2

1 + (r �rG )2 � (17a)

ṙ 2 = K + − K − (r �rG )2� (17b)

ϕ̇ = −
√

2k0
rG [1 + (r �rG )2]� (17c)

ż = k3� (17d)

using the abbreviat ions

K + = κc2 + k2
0 − k2

3� (18a)
K − = − κc2 + k2

0 + k2
3� (18b)

Solving these equat ions is st raight forward and out lined
in Sec. A 1 a. The solut ion reads

t(λ) = k0
c λ +

√
2rG
c

�
ϕ1(λ) + p1�2(λ)

�
+ t0�(19a)

r (λ) = rG

s
K +
K −

���sin
�p

B1λ
����� (19b)

ϕ(λ) = ϕ1(λ) + p1�2(λ) − p0(λ) + ϕ0� (19c)
z(λ) = k3λ� (19d)

with

pq(λ) = πσ0

$ √
B1
π λ + q

%
� (20a)

ϕ1(λ) = arctan
 

k0
√

2p
K −

tan
�
−

p
B1λ

�!
� (20b)

where we used the constant B1 from eq. (21a) and the
abbreviat ion for the init ial temporal direct ion σ0 (cf.
eq. (22a)). The expression ⌊y⌋ is the mathemat ical floor
funct ion, which ensures the cont inuous different iability
of the solut ion, except for r = 0. As stated at the end of
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Sec. II C 1, we cannot direct ly generate geodesics start ing
in the ∂ϕ -direct ion due to the coordinate singularity of
the cylindrical coordinate system. This coordinate singu-
larity is avoided by interpret ing the integrat ion constant
ϕ0 as the local start ing direct ion in the (xy)-plane. For
ϕ0 = 0, the geodesic start s in posit ive x-direct ion if the
part icle propagates into the future, i. e. k0 < 0. On the
other hand ϕ0 = π�2 result s in a geodesic start ing in
negat ive y-direct ion for k0 > 0. Note that the special so-
lut ion of the geodesic equat ions, eqns. 19, generalize the
result s of the work of Kajari et . al. [2]. Set t ing k3 = 0
and κ = 0 reproduces their result s regarding light like
mot ion in the (xy)-subspace.

x

y

z

rG

a) b)

r

ct

rG

FIG. 3: Light like geodesics st art ing at the origin. For bet -
t er orient at ion, the Gödel horizon and three planar geodesics
(compare Fig. 1) are provided in Fig. 3a. The non-planar
geodesics are solid, dashed or densely dot t ed curves. The
angle between neighboring geodesics is 10◦ . F ig. 3b: Ra-
dial coordinat e as a funct ion of coordinat e t ime. Non-planar
geodesics do not reach the Gödel radius. T imelike geodesics
are of similar shape but reach smaller maximal radial dis-
t ances from the origin.

Fig. 3 depict s several geodesics with non-zero init ial
velocity in e(3) -direct ion. Those geodesics do not reach
the Gödel horizon. However, the opt ical Gödel horizon is
of cylindrical shape, because geodesics with u(3) = ǫwith
ǫ≪ 1 (almost planar geodesics) come arbit rarily close to
the horizon for sufficient ly small ǫ. These geodesics st ill
reach any z-value after an appropriate number of cycles.
Timelike geodesics also do not reach the horizon when
start ing from the origin, even in the planar case. Both
effects are caused by the radial solut ion, eq. (17b), where
the prefactor becomes

p
K + �K − < 1. Fig. 3b shows that

geodesics start ing at the origin do not violate causality –
with respect to the observer O – because dt�dλ ≥ 0.

B . G eod esics for a r b it r a r y in it ia l con d it ion s

We will now discuss the general solut ion to the geodesic
equat ions for t imelike and light like mot ion. For this task,
the full geodesic equat ions (8) for arbit rary init ial con-
dit ions, eqns. (13), have to be solved. An out line of the

derivat ion is provided in Sec. A 1 b. We use the abbrevi-
at ions

B1 = K −
r 2

G
� B2 = − k2

2
r 4

G
� B3 = K +

r 2
G

+ 2
√

2k0k2
r 3

G
�

(21a)

B4 =
q

(rG �2)2K 2
+ + K + (

√
2rG k0k2 + k2

2)� (21b)

C1 = 1
2
√

B1
arcsin

�
r 4

G B3 − 2r 2
0K −

2rG B4

�
� (21c)

where the constants K + and K − are ident ical to those
defined in eqns. (18). To dist inguish radially outgoing or
incoming init ial condit ions as well as the init ial temporal
direct ion of a geodesic, we use the signum funct ions

σ0 = sgn(u(0)
0 )� (22a)

σ1 = sgn(u(0)
1 )� (22b)

The integrat ion constant C1 of the radial equat ion (8b)
is determined via r (0) = r0. Furthermore, we int roduce
the auxiliary funct ions

v(λ) =
p

B1(− σ1λ + C1)� (23a)

ϕ2(λ) = arctan
(

σ1r 2
G

2
√

B1(k2 +
√

2rG k0)
×

�
(2B1 + B3) tan(v(λ)) −

q
B 2

3 + 4B1B2

�)
�

(23b)

ϕ3(λ) = arctan
(

σ1r 2
G

2
√

B1k2
×

�
B3 tan(v(λ)) −

q
B 2

3 + 4B1B2

�)
� (23c)

p̃(λ) = πσ1σ0

$ √
B1
π (σ1λ − C1) + 1

2

%
� (23d)

where the funct ion p̃(λ) ensures the cont inuous differen-
t iability of the solut ion and is analogous to eq. (20a) of
the special solut ion. Finally, the analyt ical solut ions for
both arbit rary t imelike and light like geodesics are found
in the form

t(λ) = k0
c λ +

√
2rG
c [ϕ2(λ) + p̃(λ)] + C3� (24a)

r (λ) = rG

s
r 3

G B3�2− B4 sin(2v(λ))
rG K −

� (24b)

ϕ(λ) = ϕ2(λ) − ϕ3(λ) + C2� (24c)
z(λ) = k3λ + z0� (24d)

The integrat ion constants C2 and C3 can be specified
by ϕ(0) = ϕ0 and t(0) = t0. If the geodesic is only
directed along the local e(3) -axis, i. e. u(1)

0 = u(2)
0 ≡ 0, we
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a) b)

c)

d)

r

ct

A

r

ct

B = rG

r

ct

C

x

y

A

B

C

FIG. 4: P lanar light like geodesics result ing from the general
analyt ical solut ion to the geodesic equat ions. In F ig. 4a, nine
geodesics at different init ial posit ions are shown. Posit ion A is
at r 0 = r G �2, posit ion B shows geodesics st art ing on the hori-
zon r G , and in C we have r 0 = 3r G �2. At each st art ing point
geodesics propagate in + e( 1) - or ± e( 2) -direct ion, respect ively.
Non-planar geodesics show a behavior similar to the special
solut ion, F ig. 3, i. e. are smaller in radial ext ent . F igs. 4b-d
show the radial coordinat e of the geodesics as a funct ion of
coordinat e t ime.

obtain st raight lines parallel to the z-axis, where t(λ) =
k0λ�c + t0.
In Fig. 4, several planar light like geodesics are de-

picted. Fig. 4a shows the project ion onto the (xy)-
subspace and Fig. 4b-d display the correlat ion between
radial coordinate and coordinate t ime t . Most photons
in Fig. 4 part ially t ravel back through t ime. This t ravel
through t ime is in most cases rest ricted to regions beyond
the Gödel horizon and therefore not measurable by the
observer O . Fig. 4b, in which several geodesics start ing
at r 0 = rG �2 are depicted, reveals an except ion. The
magnified square shows that the corresponding photon
reenters the Gödel horizon before crossing it .
To invest igate how far a t raveler T can t ravel into the

past of an observer O , we use the general solut ion to
the geodesic equat ions (24). We consider an arbit rary
init ial posit ion and any init ial direct ion within the local
{ e(1) �e(2) } -subspace. It can be shown that u(3)

0 must be
zero to maximize t ime t ravel [35]. Solving the radial so-

lut ion, eq. (24b), with respect to the curve parameter re-
sult s in an infinite number of solut ions due to the period-
icity of r (λ). We choose the first two solut ions λ1 (where
the photon or massive part icle arrives at the horizon) and
λ2 (where it reappears from beyond the horizon). Insert -
ing λ1 and λ2 into the t ime solut ion, eq. (24a), yields a
difference in coordinate t ime

∆ t = t(λ2) − t(λ1)� (25)

Again, coordinate t ime and proper t ime of an observer
O are ident ical. Fig. 5 shows the result of these con-
siderat ions. In Fig. 5a, the minimal t ime difference ∆ t ,
eq. (25), is depicted for a given init ial radial coordinate
r 0. We find these values by numerically searching the
angle ξ0 for fixed r 0, where ∆ t becomes minimal. The
local angle between the start ing direct ion and the e(1) -
axis is denoted as ξ0. The correlat ion between ξ0 and r 0
is shown in Fig. 5b. Radii ρ1�����ρ5 denote certain init ial
posit ions for the light like case, which we will now discuss.
We set ρ1 = rG �4, ρ2 = rG �2, ρ3 = rG , ρ4 ≈ 1�4rG , and
ρ5 ≈ 1�7rG . Obviously, t ime t ravel is only possible for
r 0 . ρ5.
Fig. 5a reveals that there exist s a maximum time

t ravel (i. e. minimal ∆ t with ∆ t < 0) for a given ini-
t ial velocity. In the t ime t ravel region (0 ≤ r 0 ≤ ρ5
in the light like case), ∆ t appears constant for a large
region of init ial radii (ρ1 ≤ r 0 ≤ ρ4). Unfortunately,
equat ion (25) is too complicated to t reat it analyt ically
despite it s simple st ructure. Analyt ical invest igat ions
are rest ricted to special cases, and for a detailed anal-
ysis in general we have to resort to numerical invest iga-
t ions. We find that ∆ t is constant up to at least within
10− 10 in the region ρ1 ≤ r 0 ≤ ρ4. The global mini-
mum can be est imated with ∆ t(r 0 = ρ2�ξ0), because
(d∆ t(r 0 = ρ2�ξ0))�(dξ0) ≡ 0 (exact ly) for ξ0 = 0. The
global minimum ∆ Tc

min = ∆ t(r 0 = ρ2�ξ0) then reads

∆ Tc
min = rG

2c

"
π(
√

2− 1) − 2
√

2arctan
 √

7
5

! #

= − rG
c × 3�7645439× 10− 2� (26)

For t imelike geodesical mot ion, the plateau region be-
comes smaller but is st ill constant up to at least within
10− 10. The maximum time t ravel on t imelike geodesics
∆ Tmin(v) < ∆ Tc

min , converges to ∆ Tc
min for v → c, and

scales with rG exact ly as in the light like case. A t rav-
eler T needs a velocity of at least v = vmin & 0�980172c
(with respect to the local frame (12)) to t ravel through
t ime. If v is smaller, ∆ Tmin(v) is defined but posit ive. In
this case, the massive part icle might t ravel through t ime,
but only beyond the horizon and, thus, not visible to the
observer O .
Fig. 5b shows the correlat ion between a certain init ial

radial coordinate r 0 and the local angle ξ0 under which
the geodesic has to start for maximum time t ravel. In the
region ρ1 ≤ r 0 ≤ ρ4 there exist two init ial direct ions ξ0
under which the t ime difference ∆ Tc

min is found. Apart
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c
0�995c
0�985c
0�98c

c∆ T c
min

r 0

c∆ ta)

1

2

− 0�05

− 0�10

ρ1 ρ2 ρ3 ρ4 ρ5

r 0

ξ0b)

0�5π

π

0

− 0�5π

π

ρ1 ρ2 ρ3 ρ4 ρ5

FIG. 5: T ime t ravel on geodesics. F ig. 5a shows how far a
t raveler T (photon or massive part icle) can t ravel into the past
for a given init ial radial coordinat e r 0 (maximum t ime t ravel
∆ tm in for fixed r 0). F ig. 5b explains under which direct ion
the t raveling part icle has to st art , where ξ0 denotes the angle
to the local e( 1) -axis in the { e( 1) �e( 2) } -subspace. St art ing in
another direct ion can also result in t ime t ravel, but result s in
∆ t > ∆ Tm in . Note that the t ime axis in F ig. 5a is magnified
by a factor of 20 for ∆ t < 0.

from this region, ξ0 is unique for a given r 0 and either
takes the value π�2 or − π�2. For radii r 0 > ρ4, the init ial
direct ion is parallel to the e(2) -axis of the local rest frame
(eqns. (12)). Hence, the geodesic start s locally parallel
to the mot ion of mat ter. For r < ρ1, it start s into the
opposite direct ion.
To invest igate if causality is violated, we detail the re-

sult s of [20]. The situat ion now discussed is depicted
in Fig. 6 and Fig. 7 from two different perspect ives. In
Fig. 6, we see a radially outgoing light like geodesic start -
ing at r 0 = rG �2. For this geodesic, we achieve the max-

imum time t ravel, cf. eq. (26).

signal

signal

T

x

y

O A

B

a)

1
2 rG

b)

O

A
B

rG
cτ

r

FIG. 6: Test ing if causality can be violat ed on geodesics. A
t raveler T moves part ially beyond the horizon of an observer
O (F ig. 6a). He leaves the horizon passing observer A and
reenters it passing B . The observer B sends a light pulse to
O , informing him on the arrival of T . Then, O signals A
t his informat ion. If t his informat ion arrived before T passes
the horizon, B could stop the t raveler, result ing in a paradox.
F ig. 6b reveals that no causality violat ion arises, because the
informat ion arrives in the future light cone of the event “T
passes A ”. Note that we use a light like geodesic for the path
of T as the limit ing case v → c.

T

x

y

O
A

B

a) b)

O

A

B

rG
cτ

r

FIG. 7: Isomet rically t ransport ing A t o the spat ial origin
yields the sit uat ion from the point of view of observer A
(F ig. 7a). Both observers O and B are locat ed on the horizon
of A . The t raveler’s movement is rest rict ed to the int erior of
this horizon and no t ime t ravel arises. From this perspect ive,
t he signal from B t o O t ravels back in t ime with respect to
A (F ig. 7b).

Consider an observer T , t raveling ext remely close to
the speed of light . Then, the t raveler’s path is almost
ident ical to the light like geodesic depicted in Fig. 6. An
observer O will see a t raveler T only on those segments
of the geodesic that are within the observer’s horizon.
Fig. 4b reveals that , from O’s perspect ive, T reenters
from beyond the horizon (B ) before leaving it (A ). Due
to the finite speed of light , the observer will not see the
t raveler at the moment he reenters or leaves the horizon
but a certain light t ravel t ime later. Because the Gödel
horizon is of circular shape, the t ime span that the light
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takes to t ravel from the horizon to the origin is indepen-
dent of the exact posit ion on the horizon (as long as we
rest rict ourselves to the (xy)-plane). Therefore, this t ime
span is ident ical for the t raveler reentering the horizon as
well as leaving it . We can, as a consequence, neglect the
light t ravel t ime in our current considerat ions. Hence, the
observer O will see T t ime t ravel on a geodesical path
and this effect is not a mere consequence of the finiteness
of the speed of light . Now, we will discuss whether or not
this t ime t ravel violates causality.
The relevant geodesics segment of T beyond the hori-

zon of the geodesic is not a CTC, because the part icle
crosses the horizon at different angular coordinates and
the path is therefore not closed. Although the cause and
the effect – T must leave the horizon before reentering it
– appear reversed, we do not have a causality violat ion
in the classical meaning. A violat ion of causality would
only arise, if the effect (informat ion about the reentered
t raveler) could be t ransported to the local past light cone
of the cause (event of the t raveler leaving the horizon).
In other words: The observer O had to provide the in-
format ion about the t ime t ravel (from his point of view)
to A before T crosses the horizon in the “first” place.
Therefore, the observer B has to signal O the arrival of
the t raveler and O then has to send this informat ion to
A . Finally, A had to receive this signal before the t rav-
eler passes his posit ion. Only then he could decide to
stop the t raveler and we ended in a paradox situat ion,
where causality was violated.
Although a light like geodesic is depicted, we can st ill

use this image as the limit ing case v → c. It can be
easily est imated, using λ = π�(2

√
B1) in eq. (19a), that

a signal from the origin to the horizon would need a t ime
span (measured by O) of

∆ τ = πrG
c

 √
2− 1
2

!
≈ r g

c × 1�30129� (27)

Signaling back and forth doubles this t ime span. It is
by far longer than the absolute value of the maximum
time t ravel, eq (26). The signal of the reentering t rav-
eler therefore reaches the observer A in the future light
cone of the event of T crossing the horizon, cf. Fig. 6b.
Therefore, although the t raveler t ravels part ially back in
t ime, causality is conserved.
From the perspect ives of the observers A and B the

t raveler behaves causally normal, because their posit ions
are both located on the same geodesic and, therefore, this
geodesic is rest ricted ent irely to the respect ive horizon of
each observer. In Fig. 7, the experiment is shown with
respect to A . An isomet ric t ransport of the observer
B to the origin yielded an equivalent characterizat ion of
the situat ion. Both observers will consequent ly see the
t raveler at all t imes and the t raveler will never move back
in t ime. However, one of the signals from or to O will now
part ially t ravel back in t ime with respect to the observer
now rest ing at the origin. Therefore, for each of the three
observers exact ly one segment of the three geodesics –

the t raveler’s path or one of the geodesics t ransport ing
signals – describes a t ravel back through t ime. Because
we regard the limit v → c for the t raveler’s velocity, each
t ravel through t ime (for the respect ive observer) is equal
to the maximum time t ravel on geodesics, eq. (26).

In any case, the t raveler T will not t ravel through t ime
with respect to his own rest frame. His proper t ime τ
evolves unaffected from the considerat ions and measure-
ments done by the observer O . Due to the homogeneity
of the spacet ime, the t raveler T always rest s at the center
of “his” Gödel horizon.

IV . F IN IT E ISOM ET R IC T R AN SFORM AT ION S

In this sect ion, we derive analyt ical expressions for fi-
nite isomet ric t ransformat ions for all five Killing vector
fields of Gödel’s universe.

A . F in it e t r an sform a t ion of p oin t s

A Killing vector ξµ is defined [26] as an infinitesimal
displacement

x ′µ = xµ + εξµ (xν )� ε≪ 1� (28)

which leaves the met ric unchanged. When we rest rict
ourselves to a one-parameter family of t ransformat ions
with x ′µ = xµ (η + ε) and xµ = xµ (η), the previous re-
lat ion is equivalent to the following system of first order
different ial equat ions

dxµ (η)
dη = ξµ (xν (η)) � (29)

Together with the init ial condit ion xµ
0 , they uniquely de-

termine the orbit s of the corresponding Killing vector
field [27]. The solut ions of these equat ions are lines of
finite isomet ric displacements, shown in Fig. 8 and Fig. 9
for the Killing vector field ξµ

1 of the Gödel met ric.

While the solut ion for the t rivial Killing vector fields,
eq. (14a), is obvious and describes mere st raight lines
along t , ϕ and z in cylindrical coordinates, the solut ion
to eqns. (14b) and (14c) is more difficult to obtain. We
discuss the derivat ion of the solut ion in Sec. A 2 a. The
complete solut ion to the equat ions of isomet ric t rans-
port (29) for the Killing vector field ξµ

1 (eq. (14b)) and
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x

y

FIG. 8: P roject ion of Killing vector field ξµ
1 onto the xy-plane

(t = const . and z = const . in Cart esian coordinat es). The left
half-plane shows the vector field it self, and the right half-plane
depict s the int egral curves of finit e isomet ric displacement s
along ξµ

1 . The Gödel horizon appears as the dot t ed circle.

ξµ
4 (eq. (14c)) reads

t1(η) = σ
√

2rG
c arctan

 
D2eη + (rG �2)2

p
D1D2 − (rG �2)4

!
+ D3�

(30a)

r 1(η) =
q

D1e− η + D2eη − r 2
G �2� (30b)

ϕ1(η) = σarcsin
 
−D1e− η + D2eη

r 1(η)
p

r 2
1(η) + r 2

G

!
+ 1− σ

2 π�

(30c)
z1(η) = D4� (30d)

and

t4(η) = t1(η)� r4(η) = r 1(η)� z4(η) = z1(η)� (31a)
ϕ4(η) = ϕ1(η) + π�2� (31b)

The lower indices in the solut ion denote the connect ion to
the Killing vectors ξ1 and ξ4, respect ively. The parameter
σ dist inguishes whether the start ing angle ϕ0 is within
the right or the left half plane and reads

σ =
�

+ 1� if ϕ0 ∈ right half plane�
− 1� if ϕ0 ∈ left half plane� (32)

If the start ing angle ϕ0 is ± π�2, i. e. the start ing point
is on the y-axis, t i (η) and ϕ i (η) become constant . Now,

we set the integrat ion constants to

D1 = 1
2

�
r 2

0 + r 2
G �2− r 0

q
r 2

0 + r 2
G sinϕ0

�
� (33a)

D2 = 1
2

�
r 2

0 + r 2
G �2 + r0

q
r 2

0 + r 2
G sinϕ0

�
� (33b)

D3 = t0 − σ
√

2rG
c arctan

 
D2 + (rG �2)2

p
D1D2 − (rG �2)4

!
�

(33c)
D4 = z0� (33d)

where r 0 and ϕ0 are the init ial radial coordinate and
init ial angle, respect ively. The integrat ion constants,
eqns. (33), remain unaffected. This solut ion can easily
be cont inuously cont inued to r = 0.

x

y

ct

FIG. 9: Isomet rically t ransport ing point s on the x-axis along
the Killing vector field ξµ

1 , showing the lines of finit e isomet ric
t ransport . Solid lines indicat e t ransport t o posit ive t-values,
dot t ed lines illust rat e negat ive t ime values. The Gödel radius
appears as part ially dashed circle.

B . F in it e t r an sform a t ion of d ir ect ion s

So far we only know how to apply a finite isomet ric
t ransformat ion to points in Gödel’s universe. In order
to t ransform geodesics we must find expressions for how
to t ransform init ial direct ions and local tet rads. This is
equivalent to isomet rically t ransport ing a vector. Now we
will form infinitesimal equat ions of isomet ric t ransport
for vectors. The complete solut ions to these equat ions of
t ransport are presented in this sect ion, their derivat ion
is out lined in Sec. A 2 b.
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Let xµ (λ) be an arbit rary light like geodesic, t imelike
geodesic, or t imelike worldline. The infinitesimal isomet -
ric t ransformat ion of this curve then reads

x ′µ (λ) = xµ (λ) + ηξµ (xν (λ)) � (34)

Different iat ion with respect to λ and set t ing dxµ �dλ =
uµ yields

u′µ (λ) = uµ (λ) + η d
dλ [ξµ (xν (λ))]

= uµ (λ) + ηdξµ

dxν uµ (λ)� (35)

Now we different iate with respect to η. Because the re-
sult ing equat ion is valid for every λ, we omit the curve
parameter, and without loss of generality arrive at

duµ

dη = dξµ

dxν uν� (36)

The solut ion to this equat ion is an isomet rically t rans-
ported arbit rary vector along the lines of finite isomet ric
displacements. For the t rivial Killing vector fields (14a)
we have duµ �dη ≡ 0, hence vectors remain unchanged
when they are t ransported along these three fields. How-
ever, the situat ion of t ransport along the non-t rivial vec-
tor fields, eqns. (14b) and (14c), is more interest ing.
The different ial equat ions system for the Killing vector
field (14b), using

q̃(r ) =
q

r 2
G + r 2� (37)

reads

dut

dη = r 3
G cosϕ√
2cq3(r )

ur − r rG sinϕ√
2cq̃(r )

uϕ� (38a)

dur

dη = r sinϕ
2q̃(r ) ur + 1

2q̃(r ) cosϕ uϕ� (38b)

duϕ
dη = − r 4

G cosϕ
2r 2q3(r ) ur − (r 2

G �2 + r 2) sinϕ
r q̃(r ) uϕ� (38c)

duz

dη = 0� (38d)

As detailed in Sec. A 2 b, the solut ion with respect to the
local tet rad (eqns. 12) is

u(0) (η) = u(0)
0 � (39a)

u(1) (η) = cos(F (η))u(1)
0 + sin(F (η))u(2)

0 � (39b)

u(2) (η) = − sin(F (η))u(1)
0 + cos(F (η))u(2)

0 � (39c)

u(3) (η) = u(3)
0 � (39d)

where

F (η) = σ(arctan (l+ (η)) − arctan (l− (η)) + D5) (40a)
D5 = arctan (l− (0)) − arctan (l+ (0)) � (40b)

l± (η) = D2eη ± (rG �2)2
p

D1D2 − (rG �2)4
� (40c)

Hence, an arbit rary vector is rotated around e(3) by an
angle of F (η) with respect to the local rest frame at the
dest inat ion point xµ

1 (η) if isomet rically t ransformed along
the Killing vector field ξµ

1 . The solut ion for the vector
field ξµ

4 is now trivial. As this t ransformat ion only yields
an angular offset of ∆ ϕ = π�2, eq. (31b), the solut ion
to the equat ions of isomet ric t ransport of vectors (36) is
ident ical to the solut ion for the vector field ξµ

1 , eq. (39).
With these result s we are able to map the special solut ion
of the geodesic equat ions, Sec. III A, onto the general so-
lut ion as presented in Sec. III B by means of isomet rically
t ransforming init ial condit ions.

V . M AP P IN G OF AR B IT R ARY CURVES

In this sect ion, we will use finite isomet ric t ransfor-
mat ions to map several classes of curves. In this way,
the general solut ion to the geodesic equat ions will be re-
produced, the Gödel horizon for different observers will
be calculated, and a non-circular class of CTCs will be
generated.

A . M ap p in g of geod esics

With the result s of the previous sect ion, we are
able to generate the solut ion of the geodesic equat ions,
eqns. (24d), using geodesics start ing at the origin [36]
and finite isomet ric t ransformat ions.
Consider an arbit rary init ial posit ion xµ

0 and any light -
like or t imelike local init ial direct ion u(a)

0 . First , we ro-
tate these init ial condit ions around the z-axis using the
Killing vector field ξµ

2 unt il ϕ = π�2. This step is neces-
sary because only then the init ial posit ion can be isomet -
rically t ranslated to the origin using ξµ

1 (compare Fig. 8).
After this rotat ion by ∆ ϕ = π�2− xϕ0 , we use the solut ion
to the equat ions of isomet ric t ransport for ξµ

1 , eqns. (30),
to reach r = 0. Solving eq. (30b) for η yields

η1 = ln
 

r 2
G �2

r 2
0 + r 2

G �2 + r0
p

r 2
0 + r 2

G

!
� (41)

Finally, we t ranslate the result ing point to z = 0 using
the Killing vector ξµ

3 . The isomet rically t ransformed ini-
t ial direct ion is then found by insert ing η1 into eqns. (39).
In this way, the local init ial direct ion is rotated by an an-
gle α = F (η1), eq. (40a).
These init ial condit ions, x̄µ

0 = (xt
0�0�π�2�0) and the ro-

tated local direct ion u(a) (η1) = ū(a)
0 are then inserted into

the special solut ion of the geodesic equat ions, eqns. (19).
The result ing geodesic is then isomet rically t ransformed
back using the above t ransformat ions inverted and in re-
verse order. Insert ing these result s in the appropriate
equat ions, finite isomet ric t ransformat ions for points and
vectors as well as the special solut ion to the geodesic
equat ions reproduces the general solut ion of Sec. III B.
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Obviously, general solut ions of the geodesic equat ions
can be mapped onto other general solut ions as well.
Therefore, we consider arbit rary init ial condit ions as
above and a desired dest inat ion posit ion xµ

1 . The com-
ponent xµ

0 is rotated around the z-axis unt il ϕ = π�2 is
reached, isomet rically t ranslated along ξµ

1 to map onto
the desired radial coordinate r = xr

1, then rotated to
the dest inat ion angular coordinate ϕ = xϕ1 , and finally
isomet rically t ranslated in t ime and the z-coordinate to
arrive at xµ

1 . Again, the init ial direct ion is only rotated
due to the Killing vector field ξµ

1 by an angle F (η̃1), where

η̃1 = ln
 

r 2
1 + r 2

G �2 + r1
p

r 2
1 + r 2

G
r 2

0 + r 2
G �2 + r0

p
r 2

0 + r 2
G

!
� (42)

Numerical implementat ions of this procedure and the
general solut ion to the geodesic equat ions yield ident i-
cal result s.

B . M ap p in g of t h e G öd el h or izon

Because Gödel’s universe is homogeneous, every ob-
server O�A or B can legit imately declare his posit ion
as the origin of a coordinate system, where the line ele-
ment takes the form of eq. (1). This definit ion yields an
equivalent formulat ion of the Gödel horizon. Fig. 4 in-
dicates how these horizons are shaped. The Gödel hori-
zon around any point is the convex hull of all light like
geodesics start ing there. Furthermore, the horizon it self
is a closed null curve (CNC), because ds2 = 0 along the
Gödel radius. We could use the general solut ion to the
geodesic equat ions to calculate the exact shape. How-
ever, the usage of finite isomet ric t ransformat ions is by
far more elegant .
Due to the homogeneity of the spacet ime, each ob-

server states that ’his’ horizon is circular within the (xy)-
plane. Fig. 10 shows three different horizons. Each hori-
zon is depicted with respect to the coordinate system of
the observer O . The observer A result s from an isomet -
ric t ransport of O along ξµ

4 with η = η1, eq. (41), and
using r 0 = rG . Observer B is subject to a similar t rans-
format ion, where η = 2η1.

x

y

O A B

FIG. 10: Three horizons of three different observers O�A
and B . Crosshat ched regions mark common causality regions.
Note that O and B do not share a common region.

We find that observer O and A share a common causal-
ity region marked by the left crosshatched area. A trav-
eler T moving arbit rarily in this region will not t ravel
through t ime from both observers’ perspect ives. Ob-
servers A and B share a similar region, but the horizons
O and B are merely tangent ial to each other. Hence, mo-
t ion rest ricted to the horizon around O can be causality
violat ing but not visible for the observer B . Furthermore,
only the observer A is joint ly visible to the observer O
as well as B . Note that each horizon is circular for the
corresponding observer and only appears deformed due
to the distort ion caused by the chosen set of coordinates.

C . M ap p in g of wor ld lin es an d gen er a t ion of C T C s

In this sect ion we will discuss how worldlines are iso-
met rically t ransformed. This will be used to generate
interest ing closed t imelike curves (CTCs) from a circular
set of worldlines, where t(λ) is constant .

1. Circular CTCs

In Sec. II A, we reviewed that the light cones beyond
the Gödel horizon intersect the t = const . plane. A trav-
eler can propagate into his own local future but into the
past of an observer located at the origin of the coordinate
system (compare Fig. 2). These CTCs are circles with
constant coordinate t ime

xt = const�xr = R = const�xϕ = ωτ�xz = 0� (43)

where R ≥ rG . We generate CTCs when we require that
ut is zero. To find the corresponding direct ion in the
local frame of reference, eqns. (12), we t ransform a local
vector to the coordinate representat ion:

ut = 1
cu(0) −

√
2r

rG c
1p

1 + (r �rG )2
u(2) � (44a)

ur =
p

1 + (r �rG )2u(1) � (44b)

uϕ = 1
r
p

1 + (r �rG )2
u(2) � (44c)

uz = u(3) � (44d)

The circular CTCs are then const ructed when set t ing
ut = ur = uz = 0 in the equat ions above. This result s in
a local t imelike four-velocity u(a) = (γc�0�γvϕ�0), where
the spat ial velocity is given by

vϕ = c
r

1
2[(rG �R)2 + 1] ≤ c� (45)

and the non-zero component of the four-velocity uµ is

uϕ = ω = c
R

1p
(R�rG )2 − 1

� (46)
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Insert ing the four-velocity into the Lagrangian, eq. (6),
proves that this four-velocity is indeed a t imelike vector.
The four-accelerat ion is obtained using eq. (4), and the
only non-zero component turns out to be

ar = ω2R
�

[(R�rG )2 + 1][2(R�rG )2 − 1]
�

� (47)

which is posit ive ∀R > rG . Hence, the t raveler has to
accelerate radially outwards to sustain the circular mo-
t ion on the CTC. Note that there exist s only one angular
velocity ω for each radius R > rG to form a CTC. Other
values of ω generate possible but non-closed worldlines.
These worldlines are not causality violat ing and are com-
parable to the helix segment of the CTC in Fig. 2. From
these result s we calculate the Fermi-Walker t ransport of
an arbit rary vector X µ , eq. (5), and obtain the coupled
system of linear different ial equat ions

Ẋ t (τ) = −X r (λ)
√

2R2
p

R2 − r 2
G (R2 + r 2

G )
� (48a)

Ẋ r (τ) = X t (λ)
√

2c2R2(R2 + r 2
G )

r 2
G (R2 − r 2

G )3�2 � (48b)

Ẋ ϕ (τ) = X r (λ) 2cR2rG
(R2 − r 2

G )3�2(R2 + r 2
G ) � (48c)

Ẋ z (τ) = 0� (48d)

With the abbreviat ions

B12 = −
p

R2 − r 2
G rG

c(R2 + r 2
G ) � (49a)

B13 =
√

2r 2
G

(R2 + r 2
G )

p
R2 − r 2

G
� (49b)

(49c)

the integrat ion yields

X t (τ) = B12 [E2 cos(ντ) − E1 sin(ντ)] � (50a)
X r (τ) = E2 sin(ντ) + E1 cos(ντ)� (50b)
X ϕ (τ) = B13 [E2 cos(ντ) − E1 sin(ντ)] + E3� (50c)
X z(τ) = E3λ� (50d)

where

ν =
√

2cR2

rG (r 2
G − R2) � (51)

Before determining the integrat ion constants Ei , we for-
mulate this solut ion with respect to a local comoving
frame. First , eqns. (50) are expressed using the local
rest frame, eqns. (12), denoted as X (a) . To t ransform
this intermediate result into a local comoving frame, we
only have to apply a Lorentz boost . Obviously, the t rav-
eler T is moving in the e(2) -direct ion of the rest frame.
Hence, to t ransform the Fermi-Walker t ransported vector
into the comoving frame of the moving observer T , we
apply a Lorentz boost to X (a) (τ) in the same direct ion

with β = vϕ�c (compare eq. (45)). To express the fact
that the comoving frame result s from a Lorentz t ransfor-
mat ion Λ(a) (b) of the local rest frame, we designate the
result ing vector as X (aΛ ) . Then, the local init ial con-
dit ions X (aΛ ) (0) = X (aΛ )

0 fix the integrat ion constants.
The result of this calculat ion is

X (0Λ ) (τ) = X (0Λ )
0 � (52a)

X (1Λ ) (τ) = X (1Λ )
0 cos(ντ) + X (2Λ )

0 sin(ντ)� (52b)

X (2Λ ) (τ) = −X (1Λ )
0 sin(ντ) + X (2Λ )

0 cos(ντ)� (52c)

X (3Λ ) (τ) = X (3Λ )
0 � (52d)

With these result s at hand we consider the special case
X (aΛ )

0 = (0�1�0�0) and calculate the rotat ion angle α
after one orbit . After one period we have ωτ◦ = 2π and
obtain

τ◦ = 2πR
c

p
(R�rG )2 − 1� (53a)

α = ντ◦ = − 2
√

2π(R�rG )3
p

(R�rG )2 − 1
� (53b)

where we have used ω from eq. (46) In the limit R → rG
we obtain a closed null curve (CNC), where the spat ial
components describe the Gödel horizon. The local ve-
locity of the corresponding photon, eq. (45), is c (as ex-
pected) and the proper t ime τ◦ , eq. (53a), converges to
zero. However, a photon has to be forced on a circular
orbit , because this curve does not represent a geodesic.
This could be achieved, e. g., using an appropriate ar-
rangement of mirrors.

2. Mapping of CTCs

This set of CTCs can now be mapped onto CTCs which
pass through the origin. We transport a circular CTC
along the Killing vector field ξµ

4 , eq. (14c). Using an
approach similar to the mapping of geodesics, Sec. V A,
we calculate the isomet ric t ransformat ion of the point
xµ = (t0�R�π�0) to the origin, arriving at the same curve
parameter η1, eq. (41), which is now used in the solut ion
to the equat ions of t ransport for ξµ

4 , eqns. (31). The same
t ransformat ion is applied to each point of the worldline.
The result ing behavior can be ant icipated when analyz-
ing Fig. 8 and Fig. 9. The distance of lines of finite
isomet ric t ransport , Fig. 8, decreases for larger distances
to the origin. Hence, we expect that the t ransformed cir-
cle must appear deformed; result ing in a smaller radius
of curvature for those part s of the worldline now distant
from the origin. Fig. 9 reveals that the coordinate t ime
values of one semi-cycle will be pushed to negat ive values
while the other semi-cycle will experience a shift to posi-
t ive values. This expected qualitat ive behavior is verified
by the result s shown in Fig. 11 and 12.
Apparent ly, the result s of the previous sect ion, which

have been formulated with respect to a local frame, are
st ill valid.
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a)

x

y

b)

r

cτobs rG

FIG. 11: Isomet rically t ransport ing a circular CTC of radius
R = 3r G �2 (densely dot t ed circle) along the Killing vector
field ξµ

4 in posit ive x-direct ion. In Fig. 11a sparsely dot t ed
curves represent the isomet ric t ransport and each of these dot -
t ed curves is a CTC it self. Arrowheads indicat e the t raveler’s
flight direct ion. The result ing CTC (solid curve) represent s
a t raveler st art ing at the origin, moving beyond the Gödel
horizon – indicat ed as dashed circle in F ig. 11a or dashed line
in Fig. 11b – and returning to the origin at the coordinat e
t ime of departure. F ig. 11b: Observer t ime as a funct ion of
the radial coordinat e of the CTC. Note that coordinat e t ime
coincides with the proper t ime of a rest ing observer O . There-
fore, t he t raveler T is moving back in t ime from the rest ing
observer’s perspect ive. Also note that dt�dλ > 0 as long as
r < r G .

V I . C ON CLU SION

We have derived analyt ical solut ions to the geodesic
equat ions of Gödel’s met ric for special and general init ial
condit ions. The general solut ion was used to determine
whether or not causality violat ions exist when t raveling
on geodesics. A light like or massive paricle t ravels back
in t ime if the init ial velocity is v & 0�980172c and the
init ial radial coordinate is r 0 . 1�7rG . For a maximum
time interval ∆ Tv

min , a single part icle would exist twice
within the Gödel horizon. In all cases, causality is not
violated. The equat ions of isomet ric t ransport for both
points and direct ions were solved for all five Killing vec-
tor fields. Special solut ions to the geodesic equat ions
and finite isomet ric t ransformat ions could be combined
to generate the general solut ion of the geodesic equat ions.
After mapping the Gödel horizon we depicted regions of
common causality for different observers. Then, we de-
scribed circular CTCs and calculated the Fermi-Walker
t ransport along these circular lines with R > rG . An ob-
server t raveling on these curves has to accelerate radially
outwards and, after a proper t ime τ◦ of one period, will be
rotated by an angle α (see eqns. (53)). We then isomet ri-
cally t ransformed these circles to create CTCs start ing at

cτobs

y

x

FIG. 12: Three-dimensional presentat ion of F ig. 11(a). Iso-
met rically t ransport ing a circular CTC does not only result
in a different spat ial appearance but affect s the t ime coordi-
nat e as well. Dashed or sparsely dot t ed curve segment s are
below the xy-plane, solid or densely dot t ed curve part s have
t = τobs ≥ 0. The Gödel horizon is shown as solid circle.

the origin. This resulted in a t ime t ravel start ing at the
origin. Observer O can therefore see the t ime t raveler T ,
who would otherwise be hidden beyond the opt ical hori-
zon rG . Because these CTCs are created using isomet ric
t ransformat ions, eqns. (53) remain valid.

The correctness of the solut ion of the geodesic equa-
t ions, both special and general, has been verified by
comparisons with numerical calculat ions using, e. g., a
fourth-order Runge-Kut ta integrator or the integrators
provided by the Gnu Scient ific Library (GSL). A veri-
ficat ion of the analyt ical solut ions to the equat ions of
isomet ric t ransport for points as well as vectors has been
achieved through comparisons of mapped special solu-
t ions and the general solut ion of the geodesic equat ions.

As an out look, one could think of calculat ing the par-
allel t ransport for an arbit rary vector, which is t rans-
ported along a geodesic start ing at the origin. Then, one
could direct ly specify the general solut ion to this problem
using finite isomet ric t ransformat ions. To which extent
the result s presented carry over to the case where pertu-
bat ions are int roduced in Gödel’s met ric, such as those
considered by Barrow and Tsagas [12], remains an open
quest ion, which should be clarified by future work.

In this paper, we have discussed CTCs. These invest i-
gat ions can be generalized to PTCs and to curves closed
in t ime but not necessarily in space. These can be used,
together with the analyt ical solut ion to the equat ions of
isomet ric t ransport , for an egocent ric visualizat ion as has
been done by us in [22].



15

Ackn owled gm en t s

We thank the DFG (German Research Foundat ion)
for the financial support of the project “Visualisierung
geschlossener zeitart iger Kurven in der Allgemeinen Rel-
at ivität stheorie” (project number: 99015432).

A p p en d ix A : A p p en d ixes

1. Solu t ion of t h e geod esic equ a t ion s

Considering the equat ions of mot ion (8), we realize
that the radial equat ion (8b) is solely dependent on the
radial coordinate and it s derivat ive. The other three
equat ions (8a), (8c) and (8d) require the solut ion of the
radial equat ion. Hence, we solve the radial equat ion and
use the result to solve the remaining equat ions. Obvi-
ously, these steps can also be used for the geodesic equa-
t ions for special init ial condit ions, eq. (17).

a. Special initial conditions

After separat ion of variables in the radial equat ion,
eq. (17b), we obtain

± drp
r 2

G K + �K − − r 2
=

p
K −

rG
dλ� (A1)

where the two signs on the left -hand side result from
ext ract ing the root of eq. (17b) and describe a photon
leaving from or arriving at the origin, respect ively. This
equat ion is integrated, which yields

± arcsin
 

r
rG

s
K −
K +

!
− r 0 =

p
K −

rG
(λ − λ0± ) (A2)

with two different integrat ion constants λ0± , which de-
pend on the branch of the solut ion. Furthermore we set
r 0 = 0 due to our init ial condit ions. This can be writ ten
as

r (λ) = ± rG

s
K +
K −

sin
 p

K −

rG
(λ − λ0± )

!
� (A3)

The different branches of the solut ion are merged to a
cont inuous funct ion for both incoming and outgoing pho-
tons and the init ial condit ion r 0 which direct ly result s in
eq. (19b).
After insert ing eq. (19b) into (17a) we find

cṫ = − k0
K − �K + − sin2 �p

K − �rG λ
�

K − �K + + sin2 �p
K − �rG λ

�� (A4)

An integral for this equat ion is given by

ct(λ) = k0λ +
√

2rG arctan
 

k0
√

2p
K −

tan
 
−

p
K −

rG
λ

! !
�

(A5)

Because arctan(tan(y)) is a sawtooth funct ion, the floor
funct ion pq(λ) as in eq. (20a) is int roduced. Including
the integrat ion constant t0, we obtain a cont inuously dif-
ferent iable funct ion t(λ) as in eq. (19a).
The angular equat ion (17c) is also solvable after insert -

ing the radial solut ion (19b). The result is

ϕ̇ = −
√

2k0K − �K +

rG
�
K − �K + + sin2 �p

K − �rGλ
��� (A6)

The integral reads

ϕ(λ) = arctan
 

k0
√

2p
K −

tan
 
−

p
K −

rG
λ

! !
� (A7)

where we again need the floor funct ion pq(λ) to gener-
ate a cont inuously different iable funct ion. Including the
integrat ion constant ϕ0 we obtain the solut ion, eq. (19c).
Eq. (17d) is t rivial. For invest igat ing geodesics start ing

at the origin, we set the integrat ion constant z0 = 0.

b. General initial conditions

We subst itute R = r �rG in the general radial geodesic
equat ion (8b). After separat ion of variables, we see that

Z R (λ )

R (0)

udu√
−B1u4 + B3u2 + B2

= (± λ − λ0)� (A8)

After subst itut ing u2 = v, we can solve this equat ion
using standard integrat ion tables [37], viz.

Z dx√
X

= − 1√
− a

arcsin
�

2ax + b√
b2 − 4ac

�
� (A9)

where X = ax2 + bx + c. It is necessary, however, that
B1 > 0 and B 2

3 + 4B1B2 > 0 . This is achieved through
using the init ial condit ions, eq. (13) combined with all
possible choices of local init ial direct ions. The est imate
necessary is omit ted here because the calculat ion does
not yield any physical insight .
We calculate the above integral, solve for R(λ), and

neglect the negat ive branch result ing form ext ract ing the
root . To decide the algebraic sign in ± λ, we discuss
the monotonic behavior of the solut ion. For instance,
a geodesic start ing radially outwards must be monoton-
ically increasing in r for small λ. We find that radi-
ally outgoing geodesics require the negat ive sign and vice
versa. Hence, we subst itute ± λ → − σ1λ. We arrive at
the radial solut ion, eq. (24b), after determining the inte-
grat ion constant C1 using r (0) = r0.
To solve the angular equat ion (8c), we insert the radial

solut ion (eq. (24b)). After several steps of simplificat ion
we find, using B̄ =

p
B 2

3 + 4B1B2,

ϕ̇(λ) = 2B1k2�r 2
G

B3 − B̄ sin(v(λ)�2)

− 2B1k2�r 2
G + 2

√
2k0B1�rG

2B1 + B3 − B̄ sin(v(λ)�2) � (A10)
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where we used the abbreviat ions (eq. (21)) and the aux-
iliary funct ion v(λ) (eq. (23a)). Both terms can be inte-
grated using [38]

Z dx
b+ dsin(ax) = 2

a2
√

b2 − d2
×

arctan
�

btan(ax�2) + d√
b2 − d2

�
� (A11)

where b2 > d2 is required. Again, this can be shown using
eqns. (13) and all possible choices of light like and t imelike
local vectors. P refactors 2�(a2√ b2 − d2) are simplified
considerably when using y�

p
y2 = sgn(y), the integra-

t ion constant is found when set t ing ϕ(0) = ϕ0, and after
a lengthy calculat ion the solut ion, eq. (24c), is found.
The t ime equat ion (8a) is solved analogously. Again,

we use the radial solut ion (eq. (24b)), the abbreviat ions
Bi , the auxiliary funct ion v(λ), and obtain the following
equat ion:

cṫ = k0(− 2B1 + B3) − 2
√

2B1k2�rG
2B1 + B3 − B̄ sin(v(λ)�2)

− k0B̄ sin(v(λ)�2)
2B1 + B3 − B̄ sin(v(λ)�2) � (A12)

The first term is integrated using eq. (A11), the second
term requires the formula [39]

Z sin(ax)dx
b+ dsin(ax) = x

d − b
d

Z dx
b+ dsin(ax) � (A13)

Again, b2 > d2 is necessary and fulfilled. After simplifi-
cat ions similar to those used in the angular solut ion, we
have to int roduce the periodicity funct ion p̃(λ), eq. (23d),
for cont inuously different iable temporal behavior. Re-
quiring t(0) = t0 determines the integrat ion constant C3
as in our solut ion, eq. (24a).

2. I som et r ic t r an sform a t ion s a lon g n on -t r iv ia l
K illin g vect or field s

a. Transformation of points

The equat ions of isomet ric t ransport (29) for the
Killing vector field ξµ

1 (eq. (14b)) read

dt
dη = r√

2c
p

1 + (r �rG )2
cosϕ� (A14a)

dr
dη = rG

2
p

1 + (r �rG )2 sinϕ� (A14b)

dϕ
dη = rG [1 + 2(r �rG )2]

2r
p

1 + (r �rG )2
cosϕ� (A14c)

dz
dη = 0� (A14d)

where both r and ϕ are dependent of η. We solve
eq. (A14b) for ϕ , i. e.

ϕ = arcsin
 

2ṙ
rG

p
1 + (r �rG )2

!
� (A15)

All different iat ions in this sect ion are with respect to
the isomet ric parameter η. By insert ing this equa-
t ion into eq. (A14c) we obtain an uncoupled differen-
t ial equat ion. Using (darcsin(x))�(dx) = 1�

√
1− x2 and

cos(arcsin(x)) =
√

1− x2 we finally arrive at

4rG r r̈ + 4r 3r̈ + 4r 2ṙ 2 − 3r 2
G r 2 + 4r 2

G ṙ 2 − 2r 4 − 2r 4
G = 0�
(A16)

After subst itut ing y = r 2 we find that

(r 2
G + y2)(ÿ − y − r 2

G �2) = 0� (A17)

Because y is real, we neglect the first factor and obtain

ÿ − y = r 2
G �2� (A18)

which is solved by

y(η) = D1e− η + D2eη − r 2
G �2� (A19)

Eq. (30b) is reproduced after the back subst itut ion r =√ y.
The solut ion ϕ(η), eq. (30c), result s from insert ing r (η)

and it s derivat ive ṙ (λ) into eq. (A15).
Both r (η) and ϕ(η) are inserted into eq. (A14a), which

can then be writ ten as

ṫ =
√

2rG
p

D1D2 − (rG �2)2

c(D1e− η + D2eη + r 2
G �2) � (A20)

After the subst itut ion eη = h, dh�dη = eη we arrive at

dt
dh =

√
2rG

p
D1D2 − (rG �2)4

c(h2D2 + hr 2
G �2 + D1) � (A21)

which is solved with the appropriate arctan funct ion. Af-
ter the back subst itut ion, the solut ion eq. (30a) is found.
The integrat ion constants D1�D2�D3 and D4, eqns. (33),
are determined using the init ial condit ions xµ (0) = xµ

0 .
This choice also ensures that the solut ion is well-behaved,
i. e. D1D2− (rG �2)4 > 0∀xµ

0 . Note that eq. (A15) is only
valid if ϕ is in the right half plane. For ϕ ∈] π2 �3π

2 [, we
need a different branch of the arcsin-funct ion which re-
sult s in the parameter σ to dist inguish both half planes,
see eq. (32).
The solut ion of eq. (14c) can be derived from the so-

lut ion of eq. (14b). Considering eq. (14) it is obvious [2]
that ξ4(ϕ) = ξ1(ϕ− π�2). Hence, the solut ion of eq. (14c)
is obtained via shift ing the angular coordinate in eq. (30)
by + π�2 as stated in eq. (31).



17

b. Transformation of vectors

The equat ions of isomet ric t ransport for vectors (36)
for the Killing vector field ξµ

1 (eq. (14b)) are given by
eqns. (38). To formulate these equat ions with respect to
the local frame of reference (eq. (12)), we consider an
arbit rary vector u = uµ∂µ = u(a) e(a) . As both uµ and
u(a) depend on the curve parameter ηwe find that (using
eq. (37))

ut = − r
√

2
cq̃(r ) u(2) + 1

cu(0) � (A22a)

ur = q̃(r )
rG

u(1) � (A22b)

uϕ = rG
r q̃(r ) u(2) � (A22c)

uz = u(3) � (A22d)

and

u̇t =
√

2
cq̃(r )

�
r 2ṙ

q2(r ) u(2) − ṙ u(2) − r u̇(2)
�

+ 1
cu̇(0) �

(A23a)

u̇r = r ṙ
rG q̃(r ) u(1) + q̃(r )

rG
u̇(1) � (A23b)

u̇ϕ = rG
q̃(r )

�
u̇(2)

r − ṙ
r 2 u(2) − ṙ

q2(r ) u(2)
�

� (A23c)

u̇z = u̇(3) � (A23d)

where the derivat ive is with respect to η. We insert
eqns. (A22) and (A23) in eqns. (38) and solve for the
derivat ive of the local formulat ion u̇(a) . Note that r and
ϕ are evaluated along the solut ion (30), i. e. r = r 1(η)
and ϕ = ϕ1(η). Then, the equat ions of t ransport (38)
become

u̇(0) = 0� (A24a)
u̇(1) = f (η)u(2) � (A24b)
u̇(2) = − f (η)u(1) � (A24c)
u̇(3) = 0� (A24d)

with

f (η) = r 2
G cosϕ1(η)

2r 1(η)q̃(r 1(η)) = r 2
G

p
D1D2 − (rG �2)4

r 2
1(η)[r 2

G + r 2
1(η)] � (A25)

Hence, both components u(0) and u(3) remain unchanged
during t ransport , while u(1) and u(2) are rotated around
the local e(3) axis. Analyt ical solut ions to these equa-
t ions can be found when using an ansatz specific to the
rotat ional symmetry and applying the variat ion of con-
stants method. The extension reads

u(1) (η) = D6 cos(F (η)) + D7 sin(F (η))� (A26a)
u(2) (η) = −D6 sin(F (η)) + D7 cos(F (η))� (A26b)

where

F (η) =
Z

f (η′)dη′ + D5� (A27)

The integrat ion of f (η) and the determinat ion of D5 us-
ing F (0) = 0 reproduce the solut ion as shown in eq. (40).
Note that the parameter σ, eq. (32), ensures the correct
behavior for both half planes. The integrat ion constants
D6 and D7 correspond to the components u(1)

0 and u(2)
0

of the init ial vector with respect to the local frame of
reference, respect ively.
Again, we can derive the solut ion for the Killing vector

field ξµ
4 (eq. (14c)) using this solut ion for the Killing vec-

tor field ξµ
1 . Because the finite t ransport for points only

yields a constant angular shift of ∆ ϕ = + π�2, which, in
part icular, is independent of the curve parameter η, the
solut ion using ξµ

4 is ident ical to this solut ion for ξ
µ
1 .

3. E st im a t es

For curiosity, we provide est imates of characterist ics of
the Gödel universe taking into account a) est imates for
the cosmological constant and b) best -fit approximat ions
from the WMAP data.

a. Gödel’s universe and the cosmological constant

The cosmological constant Λ is limited to

|Λ| < 10− 51 1
m2 (A28)

due to cosmological observat ions [26]. In Gödel’s uni-
verse, the cosmological constant is related to the Ricci
scalar [1] and reads

Λ = R
2 = − 2

r 2
G

� (A29)

Note that Gödel [1] used the field equat ions in the form
Gµν = σTµν + Λgµν whereas we use Gµν + Λgµν = σTµν .
This convent ion result s in a different sign for the cos-
mological constant . Eq. (A29) determines the minimal
Gödel radius, which is

rG ≈ 4�47× 1025m ≈ 0�35runiv � (A30)

where we set r univ = 13�7 × 109 ly. The maximum time
t ravel on light like geodesics, eq. (26), is

∆ Tc
min ≈ − 1�78× 108 a� (A31)

For circular CTCs with a radius R = 2rG and eq. (53a)
we obtain a proper t ime

τ◦ ≈ 1�02× 1011 a (A32)
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for the round t rip, where the local tet rad is rotated by
an angle of

α ≈ − 6�532× 360◦ (A33)

due to the Fermi-Walker t ransport , eq. (53b). The local
velocity, eq. (45), is

vϕ ≈ 0�79c� (A34)

b. Gödel’s universe and best-fit WMAP data

Barrow et . al. [28] derived upper limit s for the rotat ion
of the universe. Following the notat ion of that paper,
J affe et . al. [29] and Bridges et . al. [30, 31] invest igated,
how Bianchi VIIh models can be fit ted to the first -year
and three-year WMAP data. They found that the best -
fit approximat ion is achieved when using a very small

rotat ion rate ω of the universe of roughly

ω≈ 5× 10− 10 H0� (A35)

where H0 is the Hubble constant . We take H0 ≈
75(km�s)�(Mpc) and ident ify ω with the rotat ion scalar
ΩG (compare eq. (2)). Solving for the Gödel radius re-
sult s in

rG ≈ 2�69× 109 runiv � (A36)

The values corresponding to the result s of the last sect ion
read

∆ Tc
min ≈ 1�3877× 1018 a� (A37a)
τ◦ ≈ 8�03× 1020 a� (A37b)

while vϕ and α remain unchanged.
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