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Do 5 of the 7 following questions.

Constants:

Solar Mass = M⊙ = 1.99 × 1033 g

Solar Radius = R⊙ = 6.96 × 1010 cm

Solar Luminosity = L⊙ = 3.9 × 1033 erg s−1

Astronomical Unit = 1.49 × 1013 cm

Parsec = 3.08 × 1018 cm

c = 3.0 × 1010 cm s−1

e = = 4.8 × 10−10 e.s.u.

h = 6.626 × 10−27 erg s

mp = 1.67 × 10−24 g

me = 9.11 × 10−28 g

k = 1.38 × 10−16 erg K−1

σ = 5.67 × 10−5 erg cm−2 K−4 s−1

G = 6.67 × 10−8 dyne g−2 cm2

Table of Selected Nuclide Masses

Element Mass/(A×AMU)
H, Z=1,A=1 1.00782505
He,Z=2,A=4 1.0006508135
C, Z=6,A=12 1
N, Z=7,A=14 1.0002195718
O, Z=8,A=16 0.9996821637
Fe, Z=26,A=56 0.9988381696



Question 1:

A star like the Sun burns ∼ 10 % of its hydrogen to helium while on the Main Sequence.
The nuclear processing takes place in the core of the Sun.

a. Using the Virial Theorem, show that the central density ρc and pressure Pc of the core
are related by Pc = 0.36 GM2/3

c ρ4/3

c , with Mc the mass of the helium core.

b. Find an expression for the core temperature Tc using the Pc from Part a if the ideal gas
law is applicable.

c. At the temperature at which helium ignites, Tign ∼ 108 K, what is the core density ρc

based on your answer to (b)? How does this compare to the critical density above
which electrons are degenerate in a gas with temperature Tign = 108 K?



Question 2:

We investigate white dwarf cooling in this question. The first law of thermodynamics is

dQ = dU + dW (1)

where dQ is change in heat, dU is the change in internal energy and dW is the work.
Assume that white dwarfs cool with constant radius, R∗, and that the internal temperature
T can be approximated as T = Teff where Teff is related to L∗ and R∗ as L∗ = 4πR2

∗
σT 4

eff .

a. Show that the first law of thermodynamics can be rewritten as

−L∗dt = −CV M∗dTeff (2)

where dt is the change in time, CV is the specific heat at constant volume, CV =
1.5(k/m) where m is average mass of a particle in the gas, and M∗ is the mass of the
white dwarf.

b. If the white dwarf cools from luminosity L◦ to a final luminoisty of Lf , show that

t = −

M∗CV

(4πσR2
∗
)1/4L

3/4

f

(1 − (
Lf

Li

)3/4) (3)

c. Use the cooling time expression in Part b to estimate the time it takes for a 0.5 M⊙

white dwarf, R∗ ∼ 109 cm, to cool from 0.01 L⊙ to 0.0001 L⊙.

d. What would be the consequence of observing a low luminosity, 0.5 M⊙ white dwarf as
described in Part c?



Question 3:

Assume the Milky Way galaxy contains ∼ 1011 stars that were formed with an initial mass
function

dN

dM
= aM−2.35 (4)

over the mass range 0.4 M⊙ to 100 M⊙.

a. Estimate the fraction of stars that form with mass M∗ > 8 M⊙, the lower limit for a
star to undergo a Type II supernova outburst.

b. Binary pulsar systems are composed of two rotating neutron stars in orbit about each
other. Suppose that progenitor neutron star binaries are formed from random draws
from the initial mass function. If half of all stars are in binary star systems, how
many binaries formed in the galaxy from stars whose initial masses were > 8 M⊙?

c. Suppose that progenitor black hole binary systems also form from random draws from
the initial mass function. If half of all stars are in binary star systems, how many
binaries formed in the galaxy from stars whose initial masses were > 30 M⊙, the
rough mass limit for formation of black holes from Type II supernovas?

d. Will a binary system composed of a 10 M⊙ star and 12 M⊙ star remain bound after
the 12 M⊙ star undergoes a Type II supernova outburst? Assume that newly formed
neutron star has mass M∗ = 1.4 M⊙. What happens to the binary system after the
10 M⊙ star undergoes a Type II supernova outburst and leaves a neutron star? Do
black hole binary progenitors suffer this same problem?



Question 4:

We used the equations of stellar structure, and Kramer’s opacity to show that

L ∝ M5.5R−0.5 (5)

earlier. The dependence on R was then eliminated through consideration of the nuclear
burning process used to generate the star’s energy. We consider a tweak of this result.

a. Find an approximate expression for the mean mass of a paricle in a plasma, in terms of
the mass fractions X, Y , and Z, the (Z,A) of an element, and m◦ the atomic mass
unit.

b. In the original derivation, the average mass per particle was assumed to be the same for
all Main Sequence stars and so not included in the derivation of the mass-luminosity
relation. Re-do the derivation of the mass-luminosity relation but this time retain the
dependence on the composition of the gas, that is, retain the average mass of particle
or retain the dependence on the mass fractions, X, Y , and Z.

c. Compare the luminosities for Pop I, Pop II, and Pop III stars of a given mass M∗ using
the mass-luminosity relation found in Part b. Pop III stars are the first generation of
stars, Z ∼ 0, Pop II stars are the next generation of stars, Z ∼ 0.001, and Pop I stars
are the cunrrent generations of stars Z ∼ 0.01-0.03.



Question 5:

Accelerated masses produce gravitational waves according to General Relativity. They lose
energy in a manner analogous to electromganetic radiation with energy loss rate,

dE

dt
= −

32GΩ6I2

5c5
(6)

where I is the quadrupole moment, G is the gravitational constant, Ω is the orbital
frequency in Radians per second, and c is the speed of light. Assume that gravitational
radiation is weak so that the orbital energy of the binary system is nearly constant over an
orbit. Under this assumption, the orbits of the stars change adiabatically as they lose E
and shrink in size.

a. For circular orbits and the assumption of an adiabatic change, show that Ṗ /P =
-(3/2)Ė/E where P is the orbital period and E is the total energy. Under an
adiabatic change, the orbits can be assumed to remain circular in shape evolving
through a series of quasi-equilibrium states of decreasing orbital radius.

b. Find an expression for Ω(t) using the result in Part a and the energy loss rate given for
gravitational radiation. Note that the quadrupole moment changes with time as the
orbit shrinks.

c. For two black holes of mass 30 M⊙, make a plot of the evolution of Ω(t) up to the time
when the separation distance is equal to 2 Rsch where Rsch is the Schwarschild radius
for a spherical black hole of mass 30 M⊙.



Question 6:

a. Show using dimensional arguments that for electrons, quantum effects (degneracy)
become important when the density exceeds

ρ ∝ µemh (mekT )1.5 h̄−3. (7)

Here ρ is the mass density, µe is the mean moleular weight per electron µe =
2/(1+X), mh is the the hydrogen mass, me is the electron mass, h̄ is Planck’s
constant, k is the Boltzmann constant, and T is the gas temperature. Evaluating
exactly leads to ρ > 10.6 × (T/106K)1.5 gram per cubic centimeter.

b. The Helium Flash begins when the density is ∼ 105 g cm−3 and T = 108 Kelvin.
Calculate the temperature when degeneracy is lifted.

c. Calculate the ratio of the energy generation rate at the time degeneracy is lifted to the
energy generation rate at the onset of the flash.



Question 7:

A simple model for a star is to assume that the star is pure hydrogen and that the star has
density structure given by

ρ(r) = ρ◦(1 − [
r

R∗

])n (8)

where ρ◦ and n are constants. Here M∗ is the stellar mass and R∗ is the stellar radius.

a. For n = 0 and 2, plot M(r). Define ρ◦ so that the total mass is M∗.

b. For n = 2, find P(r). Find an expression for the central pressure of the star for this
model.

c. Find an expression for the central temperature of the star if the star is dominated by
gas pressure. Use the ideal gas law. Given M∗ = M⊙ = 2×1033 g and R∗ = R⊙ =
7×1010 cm evaluate your expression for Tc to find the central temperature of the star
in Kelvin.)

d. Find the central temperature for the star if it is composed of helium rather than
hydrogen. To ignite helium, what must be the radius of the star if its mass is
unchanged?


