White Dwarf Stars

A white dwarf is a stellar core remnant composed mostly of
electron-degenerate matter. A white dwarf is very dense: its
mass is comparable to the Sun's, while its volume is
comparable to the Earth's. A white dwarf's faint luminosity
comes from the emission of residual thermal energy; no fusion
takes place in a white dwarf. The nearest known white dwarf is
Sirius B, at 8.6 light years, the smaller component of the Sirius
binary star. There are currently thought to be eight white
dwarfs among the hundred star systems nearest the Sun.The
unusual faintness of white dwarfs was first recognized in 1910.
The name white dwarf was coined by Willem Luyten in 1922.

Wikipedia entry



Computational Project

Goals:

 Write a numerical computational code to find white
dwarf equilibria.

* (Calculate white dwarf equilibrium structures.

* Find the mass-radius relationship for white dwarf stars
using Newtonian physics.

 Find Chandrasekhar limit.

* Find the effects of a general relativistic calculation on

the white dwarf mass radius relation. What happens to
the Chandraskehar Limit?



Newtonian Structure Equations:

1. Mass Conservation
dM (r)
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2. Hydrostatic Equilibrium
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We have three unknown quantities, P(r)
M(r), and p(r), however, because for
degenerate gases the density and pressure
are related as P = f(p). We can eliminate one
variable and solve for two. We rewrite
hydrostatic equilibrium as
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We then solve for M(r) and p(r) using
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The equation of state for degenerate
electrons P(p), is given on the next slide.



The degenerate electron pressure is
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For our calculation, we need
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Try showing that in the limits x << 1 and x >>
1, the electron pressure goes to the
appropriate non-relativistic and ultra-

relativistic limits.
wm.c’

f(x)=6.003%x10* f(x) dynes/cm’
3K

P(p) =
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where the pressures are in c.g.s, dynes-cm.



We solve for M(r) and p(r), two unknown
functions, and have two equations. This is
good. To solve uniquely for our solution,
however, we must impose two conditions on
the solution.

1. If we specify less than two conditions, our
solution is under-determined and we
cannot uniquely specify a solution

2. If we specify more than two conditions,
our solution is over-determined and we
may not be able to solve our problem.



To solve for M(r) and p(r), we may have two
types of conditions. For example,

 Both conditions could apply at one end of
our domain, the center or the surface.

1. One condition may apply at one end of the
domain and the other at the other end of
the domain, that is, one at the center and
one at the surface.

The former is an Initial Value Problem and
the latter is an Eigenvalue Problem.



To solve for M(r) and p(r), (i) we impose a
condition at the center of the star where we
require that M(0) = 0 at r = 0 and (ii) we
require that P goes to 0 at r = R.. Notice that
we do not specify either the mass or radius of
the star. The mass M.. and radius R. are
results of our calculation.

Our calculation, by its nature is a Boundary
Value problem, an Eigenvalue Problem.



The method we choose to solve our equations does
not seem consistent with these ideas. We choose to
use what is referred to as a Shooting Method,

“In numerical analysis, the shooting method is a
method for solving a boundary value problem by
reducing it to an initial value problem. It involves
finding solutions to the initial value problem for
different initial conditions until one finds the solution
that also satisfies the boundary conditions of the
boundary value problem. In layman's terms, one
"shoots" out trajectories in different directions from

one boundary until one finds the trajectory that
"hits" the other boundary condition”

Wikipedia entry



Shooting Method:

We start at the center of the star and
integrate until we reach the surface. The idea

will be to advance M(r) and p(r) from point to
point as

M(r+06r)=M(r)+or dM(r)
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p(r+6r) = p(r)+ or 22 —p(% G2 o)

Note that we use only first derivatives and the first power of 6r, this a first order
Euler scheme. (Compare to a Taylor series)




Shooting Method.

We have a problem though, at r = 0, we cannot
begin our calculation,
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Shooting Method:

We start at r = Ar, where Ar << R. and
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Shooting Method:

(i) We move a little off-center and choose
p(0) and r = Ar. Using these values we can
calculate the derivatives and start
Integrating.

(ii)) We have a question, what we should use
for our step size, 6r? First, calculate some
characteristic step lengths by finding
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Shooting Method.

(iii) What have we just done?

(iv) Choose the smaller of ér,, and ér, and then
say, let’s allow only 1 % change in the variable
over a step. In this way, we guarantee that our
simple estimate (low-order method) is good.

(v) We use this method to re-calculate our step
size on every step to keep our method accurate.

(vi) Halt the integration when p reaches a small

value say p/p(0) < 104 or so. This ends the star
and determines M. and R..



Tolman-Oppenheimer-Volkoff Equation

The Tolman—-Oppenheimer—Volkoff (TOV) equation
constrains the structure of a spherically symmetric
body of isotropic material which is in static gravitational
equilibrium, as modeled in general relativity. The TOV
equation appropriate for white dwarfs is
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where, m(r) is the mass contained within radius r and ¢
is the speed-of-light. TOV equation is similar in form to
the Newtonian equation; it takes account of the fact
that energies contribute to the gravitational mass.




Computational Project Report

. Short introduction to problem and describe goal of
your calculation.

Describe your numerical method, how you solved
equation set, and how you tested your code. Turn in
an annotated copy of your computer code.

Describe the results of your calculations and make
sure to turn in a table that contains the central
density, R.and M. from your calculation and a plot of
the mass-radius relation which includes the low-mass
approximation.

Include effects of General Relativity and find the mass-
radius relationship.



Appendix: Sample Code

Sample program (in Fortran 90). General flow of the program is

More
models to
calculate

Advance M(r) and
p(r) by ér

Step Size, 6r

Do Loop over
structure

> Finished!



program mass_radius

xmue=2.00 ! pure helium or metals
pi=3.141592654

p1=5.0/3.0
p2=1.0/3.0
epsilon=2.0

do nwd=1,28

rho0=5.0e4*epsilon**(nwd-1)
r0=1.0e4
xmass0=(4.0*pi/3.0)*r0**3*rho0
rho=rho0

r=r0

Xmass=xmass0

step=r0



do n=1,20000
x=1.009e-02*(rho/xmue)**p2
dpdrho=6.002e22*8.0*x**5/(3.0*rho*sqrt(1.0+x**2))
dm=4.0*pi*r**2*rho
drho=-6.673e-08*xmass*rho/r**2/dpdrho
| advance m, rho, and r
Xmass=xmass+step*dm
rho=rho+step*drho
r=r+step
tsl=abs(rho/drho)
ts2=abs(xmass/dm)
step=0.01*amin1(ts1,ts2)
if(rho.le.1.0e-00) go to 1
end do
1 continue




write(6,100) rho0,r,xmass/2.0e33,xn-1
100 format(1pdel2.4)

end do

end



