Section 3: Simple Stellar Structure Models

We explore simple stellar models and some properties
of Main Sequence stars. We do not solve the full set of
coupled differential equations, rather, we find particular
solutions for simplifying assumptions.

1. We make further dimensional arguments to see if
we can understand more properties of Main
Sequence stars.

2. We consider two prescriptions for the density, (i)
constant density, (ii) linear fall off of density. The
solutions allow us to see how well our simple scaling
arguments perform.



Equations of Stellar Structure



Dimensional Analysis

We first see if we can understand further
properties of Main Sequence stars using
dimensional analysis. We look at

e Mass-Luminosity relationship

 Upper and lower mass limits on Main Sequence
stars

 Mass-radius relationship
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Table of main-sequence stellar parameters!=>!

Radius Mass Luminosity Temp.
e e o e e i
06 18 40 500,000 38,000 | Theta! Orionis C
BO 7.4 18 20,000 30,000 | Phi' Orionis
B5 3.8 6.5 800 16,400 | Pi Andromedae A
AOQ 2.5 3.2 80 10,800 | Alpha Coronae Borealis A
A5 1.7 2.1 20 8,620 | Beta Pictoris
FO 1.3 1.7 6 7,240 | Gamma Virginis
F5 1.2 13 2.5 6,540  Eta Arietis
GO 1.05 1.10 1.26 5,920 | Beta Comae Berenices
G2 1 1 1 5,780 | Sunl(note 2]
G5 0.93 0.93 0.79 5,610 | Alpha Mensae
KO 0.85 0.78 0.40 5,240 | 70 Ophiuchi A
K5 0.74 | 0.69 0.16 4,410 | 61 Cygni Al27]
MO 0.51 0.60 0.072 3,800 | Lacaille 8760
M5 0.32 0.21 0.0079 | 3,120 | EZ Aquarii A
M8 0.13 0.10 0.0008 | 2,660 | Van Biesbroeck's starl28!




|. Mass-Luminosity relationship
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Use dimensional arguments; keep only the non-
constant terms,
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lla. Main Sequence Upper Mass Limit
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A little high, but in the right ballpark. If not the
direct reason likely the correct reason is related.
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lIb. Main Sequence Lower Mass Limit
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A protostar has not yet ignited nuclear fusion so, as
it radiates, it cools and contracts compressing and
heating. Eventually, it compresses and heats to the
point where fusion ignites in its core and it becomes
a star. This happens when its core temperature
reaches around 10 million K.




As a protostar contracts and heats, a complication
may set in. If the protostar becomes compact
enough, guantum mechanical effects become
important and we must take account of the Pauli
exclusion principle, degenerate gas pressure

becomes important. This happens when uncertainty
principle effects,

AxAp =

are non-negligible. When does this happen?



For a gas with number density n and thermal energy
kT, estimate when this happens.

* nimplies average particle separation of n'?/3

* kT implies average momentum of p = (3m _kT)/?

Quantum effects will be important when

h ~ n—1/3
\/ 3m kT

AxAp = Ax,[3m kT =h — Ax =

e



Quantum effects will be important when

h -1/2 T ~1/2
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The central p of a 0.1 M star is ~ 500 g cm™. (i) For

smaller M, p is larger and, (ii) Brown dwarfs, failed
stars, have T ~ 10° K. Detailed modeling finds that QM
effects are important in stars below 0.08 M ;.



Section 3: Simple Stellar Structure Models

We explore simple stellar models and some properties
of Main Sequence stars. We do not solve the full set of
coupled differential equations, rather, we find particular
solutions for simplifying assumptions.

1. We consider two prescriptions for the density, (i)
constant density, (ii) linear fall off of density. The
solutions allow us to see how well our simple scaling
arguments from Section 2 perform.

2. We make dimensional arguments to see if we can
understand some properties of Main Sequence
stars.



Equations of Stellar Structure




1(i). What does an equilibrium, spherically
symmetric, constant density star look like?

|. Mass Distribution

dM(I") =4JTI"2,0
dr
efrdM(r)=M(7')=4J'L'fr7‘2,00d7’=4?n,007’
47

—-M.=—pR’
3 P,

3



1. Momentum Conservation
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Estimate the central pressure. Let r go to R,
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Central Pressure and Temperature

2
PC=G(3)M*
8T

R
Estimate T.. Use the perfect gas law, P = (p/um_)kT, and
Solar parameters to find,

2
37 J\ R, um_

eTc=(“m0) M. |_7.1x10°k
%k )\ R




lll. Energy Conservation

. dL(r)
dr

We can’t make further progress unless we know the
nuclear energy generation process.

= 471" p(r)e(r)



1(ii). What does a star with spherically
symmetric, density distribution, p_(1-r/R.), look
like?

|. Mass Distribution
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1. Momentum Conservation
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Central Pressure and Temperature
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Estimate T.. Use the perfect gas law, P = (p/um_)kT, and
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Solar parameters to find,
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