Astronomy 323
Homework 2
Due: Monday, 2018 January 29
6. Show that the current proper distance to the particle horizon, the most distant place we can see, for a matter dominated, $k=0$ universe with no cosmological constant, is given by $r_{h} R_{\circ}=3 c t_{\circ}$. Here, r_{h} is the comoving radial coordinate of the particle horizon, R_{\circ} is the current scale factor, and t_{0} is the current age of the universe. Why is this answer not simply $c t_{0}$? Hint: light moves along null geodesics where $d s^{2}=0$ and the scale factor for the universe described in this problem is $R(t)=R_{\circ}\left(t / t_{\circ}\right)^{2 / 3}$.
7. A universe has curvature $k=0$ and $\Omega_{\Lambda}=1$. Let $R(0)=R_{\circ}$. Find the comoving coordinate of a galaxy that sits at the particle horizon, r_{h}, at time t. Comment on your result.
8. You are a two-dimensional creature living on a sphere with radius R. Find the circumference of a circle of radius r drawn on the sphere. Suppose you can only measure distances to $\pm 1 \mathrm{~cm}$, how large of a circle would you need to draw to convince yourself the Earth is spherical in shape.
9. Suppose the energy density of the cosmological constant, ε_{Λ}, was equal to the critical energy density. How much energy is contained in the energy of the cosmological constant in a sphere of radius 1 Astronomical Unit? Compare this energy to the rest mass energy of the Sun. Does the energy in the cosmological constant play a large role in the dynamics of the Solar System? Explain your answer.
10. By making the substitutions

$$
\begin{align*}
& x=r \sin \theta \cos \phi \tag{1}\\
& y=r \sin \theta \sin \phi \tag{2}\\
& z=r \cos \theta \tag{3}
\end{align*}
$$

demonstrate that equations (3.12) and (3.13) represent the same metric.

