Homeowrk 8
Due: June 9, 2015
45. Chapter 3, Section 11, Problem 48
46. Chapter 3, Section 11, Problem 62
47. The Hamiltonian operator for the one-dimensional simple harmonic oscillator is

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{m \omega^{2} \hat{x}^{2}}{2} \tag{1}
\end{equation*}
$$

where \hat{p} and \hat{x} are operators, m is the mass, and ω is the oscillator frequency. Show that the Hamiltonian operator is Hermitian.
48. A special linear operator $|\alpha\rangle\langle\beta|$ is defined by its action on an arbitrary ket, $|\psi\rangle$,

$$
\begin{equation*}
(|\alpha\rangle\langle\beta|)|\psi\rangle=|\alpha\rangle\langle\beta \mid \psi\rangle \tag{2}
\end{equation*}
$$

Show that its action on an arbitrary bra is given by

$$
\begin{equation*}
\langle\psi|(|\alpha\rangle\langle\beta|)=\langle\psi \mid \alpha\rangle\langle\beta| . \tag{3}
\end{equation*}
$$

49. and 50. If A is a linear operator, than A^{\dagger} is another linear operator defined by its action on an arbitrary ket, $|\psi\rangle$,

$$
\begin{equation*}
A^{\dagger}|\psi\rangle=(\langle\psi| A)^{\dagger} . \tag{4}
\end{equation*}
$$

Using equation [2], show that

$$
\begin{align*}
\langle\phi| A^{\dagger}|\psi\rangle & =(\langle\psi| A|\phi\rangle)^{*}, \tag{5}\\
(|\alpha\rangle\langle\beta|)^{\dagger} & =|\beta\rangle\langle\alpha| \tag{6}
\end{align*}
$$

