Physics 412: Introduction to Electrodynamics

Homework 1
Due: Friday, 9 October, 2009

1. Problem 2.1
2. Problem 2.4
3. Problem 2.41
4. For the dipole electric field,

$$
\begin{equation*}
E(r, \theta)=\frac{C_{\circ}}{r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta}) \tag{1}
\end{equation*}
$$

find and sketch the field lines.
5. Electric field of and force on continous charge distributions
a. Find the electric field for a charged sphere of radius R with spherically symmetric charge distribution. Find the field both inside and outside the sphere.
b. Place another charged sphere of radius R with an identical spherically symmetric charge distribution such that the distance between the centers of the two spheres is D , where $\mathrm{D}>2 \mathrm{R}$. Find the total force between the two charged spheres.
6. An infinitesimally thin flat disk with radius R and surface charge density $\sigma>0$ is placed so that its center lies at the origin of a Cartesian coordinate system.
a. Find the electric field of the disk on its symmetry axis. For this problem let the z -axis be the symmetry axis of the disk.
b. A charge q , where $\mathrm{q} \sigma<0$, is placed at the center of the disk. What is the force on charge q?
c. If charge q is constrained to move only along the z -axis find and describe its subsequent motion if it is pushed off the origin an amount $h \ll R$.

