NAME

Physics 412: Introduction to Electrodynamics
Test 2
Do 3 out of the 4 following questions. Please mark clearly the 3 questions you wish to have graded.

Problem 1:
A grounded, conducting sphere of radius R is placed into an otherwise uniform electric field.
a. Find the potential everywhere.
b. Find the surface charge density, σ, on the conductor.

Problem 2:
Two infinite, grounded conducting slabs meet at right angles. A charge q is on the diagonal at distance d from each slab (see below).
a. Find the force on charge q.
b. Find the work needed to bring the charge q in from infinity to its present position.

Problem 3:
A circular wire loop of radius R has charge Q distributed uniformly around its length.
a. Find the potential on the axis of the wire loop.
b. Find the electric field in the plane of the wire loop for $r<R$, where r is the radial coordinate. Find the 3 lowest order, nonzero multipole fields.

Problem 4:
An infinite set of electrodes is as shown below. The strips have width w and length l, where $l \gg w$, and the strips are held at alternating potentials, V_{\circ} and $-V_{\circ}$. For this problem, ignore edge effects, that is, assume l is effectively infinite.
a. What is the potential on the vertical planes at $\mathrm{x}= \pm \mathrm{n} w$, where n is an integer?
b. Find the potential everywhere.

