NAME

Test 2: Physics 410, Mathematical Methods for Physicists
November 26, 2013

- Do 4 of the 6 following problems.
- Mark clearly the questions you wish to have scored.
- Each question is weighted equally.
- The exam is worth 50 points.
a. For the complex exponential Fourier series,

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} c_{n} \mathrm{e}^{2 i \pi n x / P} \tag{1}
\end{equation*}
$$

where P is the period of $f(x)$, derive an expression for the c_{n}.
b. Given

$$
f(x)= \begin{cases}x, & -1<x<1 \tag{2}\\ 0, & 1<|x|<3\end{cases}
$$

and $f(x)$ has period 6 , draw a graph of $f(x)$ between -10 and 10 . Is $f(x)$ even, odd, or neither?
c. Find the exponential Fourier series for the $f(x)$ given in part (b).

Find the solution for the differential equation

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{\partial^{2} y}{\partial x}-2 x \frac{\partial y}{\partial x}+2 y=0 \tag{3}
\end{equation*}
$$

using the integration by series method, that is, under the assumption that the solution to the above differential equation may be written as

$$
\begin{equation*}
\sum_{\lambda=0}^{\infty} a_{\lambda} x^{\lambda+k} \tag{4}
\end{equation*}
$$

where k is a constant as follows:
a. find the indicial equation, and then find the acceptable values for k.
b. Find the two-term recurrence relation for the a_{λ}.
c. Find the solution for the differential equation.

The one-dimensional heat flow equation is given by

$$
\begin{equation*}
\kappa^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \tag{5}
\end{equation*}
$$

a. Using separation of variables, find the solution for the one-dimensional heat flow equation.
b. The temperature u of a thin metal rod of length L, extending from $x=0$ to L, is held at $u=T_{\circ}=50^{\circ} \mathrm{C}$ at $t=0$. For times $t>0$, the condition $\frac{\partial u}{\partial x}=0$ is enforced at the ends of the bar. For these boundary conditions, find $u(x, t)$ as a function of time.
c. What is the temperature at the ends of the bar at times $t=\tau_{\circ}$ and $5 \tau_{\circ}$, where $\tau_{\circ}=$ $L^{2} /\left(\pi^{2} \kappa^{2}\right)$
d. What is the temperature at the center of the bar at the same times, $t=\tau_{\circ}$ and $5 \tau_{\circ}$.

A box with sides of length $a=10$ has two insulated sides, one at $y=0$ and the other at x $=a$, both held at $\mathrm{T}=50^{\circ} \mathrm{C}$. The other four sides of the box are held at $\mathrm{T}=0^{\circ} \mathrm{C}$.
a. Find the steady-state temperature inside the box.
b. Estimate the steady-state temperature at the center of the box $\mathrm{T}(5,5,5)$.
c. Find the direction energy would flow at the center of the box.

The potential on a spherical shell, radius R, is held at

$$
\begin{equation*}
\Phi(r=R, \theta)=\Phi_{\circ}\left(\sin ^{2} \theta+\cos ^{3} \theta\right) \tag{6}
\end{equation*}
$$

a. Express the potential on the spherical shell in terms of Legendre polynomials.
b. Show that the axially symmetric potential $\Phi(r, \theta)$ may be written as

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\theta) \tag{7}
\end{equation*}
$$

by solving the Laplace equation for $\Phi(r, \theta)$ using the method of separation of variables. You may assume that the solution of the Legendre equation for integer l are Legendre polynomials.
c. Find $\Phi(r, \theta)$ inside and outside the spherical shell using the form for $\Phi(r, \theta)$ given in part (b). Note that at ∞, the potential goes to zero and that at the origin, the potential must be well-behaved.

Question 6

We have the function

$$
f(x)= \begin{cases}0, & |t|>T \tag{8}\\ \sin \omega_{0} t, & |t|<T\end{cases}
$$

a. Find the Fourier transform of $f(x)$.
b. Show that the larger the value of T, the more the Fourier transform $g(\omega)$ concentrates around the frequencies $\pm \omega_{0}$.

