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A rough outline of all six lectures

The beginning: The C*-algebra of a group.

Actions of finite groups on C*-algebras and examples.

Crossed products by actions of finite groups: elementary theory.

More examples of actions.

Crossed products by actions of finite groups: Some examples.

The Rokhlin property for actions of finite groups.

Examples of actions with the Rokhlin property.

Crossed products of AF algebras by actions with the Rokhlin property.

Other crossed products by actions with the Rokhlin property.

The tracial Rokhlin property for actions of finite groups.

Examples of actions with the tracial Rokhlin property.

Crossed products by actions with the tracial Rokhlin property.

Applications of the tracial Rokhlin property.
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General motivation
The material to be described is part of the structure and classification
theory for simple nuclear C*-algebras (the Elliott program). More
specifically, it is about proving that C*-algebras which appear in other
parts of the theory (in these lectures, certain kinds of crossed product
C*-algebras) satisfy the hypotheses of known classification theorems.

To keep things from being too complicated, we will consider crossed
products by actions of finite groups. Nevertheless, even in this case, one
can see some of the techniques which are important in more general cases.

Crossed product C*-algebras have long been important in operator
algebras, for reasons having nothing to do with the Elliott program. It has
generally been difficult to prove that crossed products are classifiable, and
there are really only three cases in which there is a somewhat satisfactory
theory: actions of finite groups on simple C*-algebras, free minimal actions
of groups which are not too complicated (mostly, not too far from Zd) on
compact metric spaces, and “strongly outer” actions of such groups on
simple C*-algebras.
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Background

These lectures assume some familiarity with the basic theory of
C*-algebras, as found, for example, in Murphy’s book. K-theory will be
occasionally used, but not in an essential way. A few other concepts will
be important, such as tracial rank zero. They will be defined as needed,
and some basic properties mentioned, usually without proof. Various side
comments will assume more background, but these can be skipped. (Many
side comments which should be made will be omitted entirely, for lack of
time.)
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Do the exercises!

There will be many exercises given, with varying levels of difficulty. To
really get to understand this material, please do them!

I am happy to talk to people about the exercises.
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The beginning: The group ring
Let G be a finite group. Its group ring C[G ] (a standard construction in
algebra) is, as a vector space, the set of formal linear combinations∑

g∈G
ag · g (1)

of group elements with coefficients ag ∈ C. (Formally: the free C-module
on G .) The multiplication is (a · g)(b · h) = (ab) · (gh) for g , h ∈ G and
a, b ∈ C, extended linearly. That is, the product comes from the group.

G need not be finite (but must be discrete), provided that in (1) one uses
only finite sums (ag = 0 for all but finitely many g ∈ G ).

Exercise

Prove that C[G ] is an associative unital algebra over C.

One can use any field (even ring) in place of C. The algebraists actually
do this.

Motivation: Representation theory (brief comments below).
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The beginning: The group ring (continued)
G is a discrete group, and

C[G ] =

{∑
g∈G

ag · g : ag ∈ C, ag = 0 for all but finitely many g ∈ G

}
.

Multiplication: (a · g)(b · h) = (ab) · (gh), extended linearly.

Recall the usual polynomial ring C[x ]. Let 〈S〉 denote the ideal generated
by a set S . Also, abbreviate Z/nZ to Zn. (We won’t use p-adic integers.)

Example

Take G = Z2. Then C[G ] ∼= C[x ]/〈x2 − 1〉. The identity of the group is 1
and the nontrivial element is x .

Exercise (easy)
Check the statements made in the previous example.

Exercise (easy)
Generalize the previous example to Zn for n ∈ N.
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The beginning: The group ring (continued)

G is a discrete group, and

C[G ] =

{∑
g∈G

ag · g : ag ∈ C, ag = 0 for all but finitely many g ∈ G

}
.

Multiplication: (a · g)(b · h) = (ab) · (gh), extended linearly.

Recall: C[Z2] ∼= C[x ]/〈x2 − 1〉, with the nontrivial group element being x .

Example

Take G = Z. Then C[G ] ∼= C[x , x−1], the ring of Laurent polynomials in
one variable. The group element k ∈ Z is xk .

Exercise (easy)

Check the statements made in the previous example.
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The beginning: The C*-algebra of a group
G is a discrete group, and

C[G ] =

{∑
g∈G

ag · g : ag ∈ C, ag = 0 for all but finitely many g ∈ G

}
.

Multiplication: (a · g)(b · h) = (ab) · (gh), extended linearly.

Make C[G ] a *-algebra by making the group elements unitary: g∗ = g−1.
C*-algebraists thus usually write ug for the element g ∈ C[G ]. So

C[G ] =

{∑
g∈G

ag · ug : ag ∈ C, ag = 0 for all but finitely many g ∈ G

}
.

The multiplication is (a · ug )(b · uh) = (ab) · ugh for g , h ∈ G and a, b ∈ C,
extended linearly, and the adjoint is (a · ug )∗ = aug−1 .

Exercise
Show that this adjoint in C[G ] is well defined, conjugate linear, reverses
multiplication: (xy)∗ = y∗x∗, and satisfies (x∗)∗ = x .
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The beginning: The C*-algebra of a group (continued)
G is a discrete group, and

C[G ] =

{∑
g∈G

ag · ug : ag ∈ C, ag = 0 for all but finitely many g ∈ G

}
.

Multiplication: (a · ug )(b · uh) = (ab) · ugh. Adjoint: (a · ug )∗ = aug−1 .

We still need a norm. We will assume G is finite; things are otherwise
more complicated. First, a bit of representation theory.

Let G be a discrete group, and let H be a Hilbert space. Let w be a
unitary representation of G on H: a group homomorphism g 7→ wg from
G to the group U(H) of unitary operators on H. Then we define a linear
map πw : C[G ]→ L(H) by

πw

(∑
g∈G

ag · ug

)
=
∑
g∈G

ag · wg .

Exercise
Prove that πw is a unital *-homomorphism.
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The beginning: The C*-algebra of a group (continued)
G is a discrete group. Multiplication in C[G ]: (a · ug )(b · uh) = (ab) · ugh.
Adjoint: (a · ug )∗ = aug−1 .

If w is a unitary representation of G on a Hilbert space H (a group
homomorphism g 7→ wg from G to the group U(H) of unitary operators
on H), then the unital *-homomorphism πw : C[G ]→ L(H) is

πw

(∑
g∈G

ag · ug

)
=
∑
g∈G

ag · wg .

Theorem

The assignment w 7→ πw is a bijection from unitary representations of G
on H to unital *-homomorphisms C[G ]→ L(H).

Exercise

Prove this theorem. (To recover w from πw , look at πw (ug ).)

N. C. Phillips (U of Oregon) Group C*-Algebras, Actions of Finite Groups 11 July 2016 12 / 28



The left regular representation
G is a discrete group. Multiplication in C[G ]: (a · ug )(b · uh) = (ab) · ugh.
Adjoint: (a · ug )∗ = aug−1 .

If w is a unitary representation of G on H, then πw : C[G ]→ L(H) is the

unital *-homomorphism πw

(∑
g∈G ag · ug

)
=
∑

g∈G ag · wg .

Take H = l2(G ), and let z be the left regular representation:
(zgξ)(h) = ξ(g−1h). (On standard basis vectors, it is zgδh = δgh.)

Exercise

Prove that z is a unitary representation, and that the claimed formula for
zgδh is correct. (What goes wrong if you use ξ(gh) in place of ξ(g−1h)?
Which of the formulas ξ(hg) and ξ(hg−1) also gives a representation?)

Proposition

If z is the left regular representation, then πz : C[G ]→ L(l2(G )) is
injective.
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The norm on C ∗(G )
G is a discrete group. If w is a unitary representation of G on H, then

πw : C[G ]→ L(H) is πw
(∑

g∈G ag · ug
)

=
∑

g∈G ag · wg . Take

H = l2(G ), and let z be the left regular representation:
(zgξ)(h) = ξ(g−1h).

Proposition
If z is the left regular representation, then πz is injective.

Exercise
Prove this proposition. (You need to show that the elements πz(ug ) are
linearly independent; this ultimately reduces to linear independence of the
standard basis vectors δh ∈ l2(G ).)

Definition
If G is finite, C ∗(G ) is C[G ] equipped with the norm ‖x‖ = ‖πz(x)‖.

C ∗(G ) is complete since C[G ] is finite dimensional. πz(C[G ]) ⊂ L(l2(G )),
so C ∗(G ) is a C*-algebra, and this is the unique C* norm.
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Group C*-algebras and representation theory
Recall:

Theorem

If G is discrete, the assignment w 7→ πw is a bijection from unitary
representations of G to unital *-homomorphisms C[G ]→ L(H).

When G is finite, get the unique C* norm on C[G ] by choosing w so that
πw is injective. (For example, take w to be the left regular representation.)

Information about w is often much easier to see from πw . A very primitive
example: one can have Ker(v) = Ker(w) but Ker(πv ) 6= Ker(πw ). So
C[G ] is very important in the algebraic study of representations.

If G is not finite, one must choose a C* norm on C[G ] and complete. This
makes things harder. If G is locally compact, then one uses the
convolution algebra L1(G ) in place of C[G ]. (For discrete G , one can use
l1(G ).) Now the group elements aren’t even in the algebra. The resulting
C*-algebras are very important in representation theory, and this is an
important direction in C*-algebras, but I will say no more here.
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Examples of C*-algebras of finite groups: Z2

Recall: C ∗(G ) is C[G ] with a (unique) C* norm.

Example
G = Z2. Then C ∗(Z2) is commutative because G is, and
dim(C ∗(Z2)) = card(Z2) = 2. There is only one commutative
C*-algebra A with dim(A) = 2, namely C⊕ C, so C ∗(Z2) ∼= C⊕ C.

To see this more directly, let h be the nontrivial group element. Then
u2h = 1, so one can calculate: p0 = 1

2(1 + uh) and p1 = 1
2(1− uh) are

orthogonal projections with p0 + p1 = 1, and which span C ∗(Z2). Since
dim(C ∗(Z2)) = 2, we get an isomorphism C⊕C→ C ∗(Z2) by (1, 0) 7→ p0
and (0, 1) 7→ p1.

pj is functional calculus of uh: pj = fj(uh) with

f0(1) = 1, f0(−1) = 0, and f1(1) = 0, f1(−1) = 1.

Exercise
Find an explicit isomorphism C ∗(Zn)→ Cn. (Take h to be a generator of
the group.)
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Recall: For G finite, C ∗(G ) is C[G ] with a (unique) C* norm.

We found an explicit isomorphism C⊕ C→ C ∗(Z2). Exercise from the
last slide: find an explicit isomorphism Cn → C ∗(Zn).

Exercise (easy)

Let G be finite. Prove that C ∗(G ) is commutative if and only if G is
commutative.

This is true in general. (You have seen enough to do this for discrete G ,
even without knowing the definition of the norm.)

Example

G = S3, the permutation group on 3 symbols. Then C ∗(S3) is
noncommutative because G is, and dim(C ∗(S3)) = card(S3) = 6. There is
only one noncommutative C*-algebra A with dim(A) = 6, namely
C⊕ C⊕M2, so C ∗(S3) ∼= C⊕ C⊕M2.

Exercise (messy from scratch; I have not done it)

Find an explicit isomorphism C⊕ C⊕M2 → C ∗(S3).
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Examples of C*-algebras of finite groups

Recall: For G finite, C ∗(G ) is C[G ] with a (unique) C* norm.

C ∗(Zn) ∼= Cn.

C ∗(S3) ∼= C⊕ C⊕M2.

Fact: For general finite G , C ∗(G ) is given by the representation theory:
there is one summand Md for every unitary equivalence class of
d-dimensional irreducible unitary representations of G .

This fact generalizes to compact groups.

Examples without justification: C ∗(Z) ∼= C (S1); C ∗(R) ∼= C0(R); if G is
commutative, then C ∗(G ) ∼= C0

(
Ĝ
)
.

Computing C ∗(G ) is very hard in general. See Higson’s later lectures for
how to get some information (usually K-theory).
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Towards crossed products

We will look at crossed products of actions of (finite) groups on
C*-algebras. These are a generalization of C*-algebras of groups: C ∗(G )
is gotten by letting G act trivially on C.

Possibly the original motivation: if G is a semidirect product G = N o H,
then H acts on C ∗(N) and the crossed product is C ∗(G ).

Before defining crossed products (see Lecture 2), we give the definition of
an action and some examples.
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Group actions on C*-algebras

Definition

Let G be a group and let A be a C*-algebra. An action of G on A is a
homomorphism g 7→ αg from G to Aut(A).

That is, for each g ∈ G , we have an automorphism αg : A→ A, and
α1 = idA and αg ◦ αh = αgh for g , h ∈ G .

In these lectures, almost all groups will be discrete (usually finite). If the
group has a topology, one requires that the function g 7→ αg (a), from G
to A, be continuous for all a ∈ A.

We give examples of actions of groups (mainly finite groups), considering
first actions on commutative C*-algebras. These come from actions on
locally compact spaces, as described next.
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Group actions on spaces

Definition

Let G be a group and let X be a set. Then an action of G on X is a map
(g , x) 7→ gx from G × X to X such that:

1 · x = x for all x ∈ X .

g(hx) = (gh)x for all g , h ∈ G and x ∈ X .

If G and X have topologies, then (g , x) 7→ gx is required to be (jointly)
continuous.

Without topologies, an action of G on X is just a homomorphism from G
to the automorphism group of X . Since X has no structure, its
automorphism group consists of all permutations of X .

When G is discrete, continuity means that x 7→ gx is continuous for all
g ∈ G . Since the action of g−1 is also continuous, this map is in fact a
homeomorphism. Thus, an action is a homomorphism from G to the
automorphism group of X . Here, the automorphisms of X are the
homeomorphisms.
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Group actions on commutative C*-algebras
An action of G on X is a continuous map (g , x) 7→ gx from G × X to X
such that:

1 · x = x for all x ∈ X .

g(hx) = (gh)x for all g , h ∈ G and x ∈ X .

Lemma

Let G be a topological group and let X be a locally compact Hausdorff
space. Suppose G acts continuously on X . Then there is an action
α : G → Aut(C0(X )) such that αg (f )(x) = f (g−1x) for g ∈ G ,
f ∈ C0(X ), and x ∈ X .

Every action of G on C0(X ) comes this way from an action of G on X .

Compare the formula for αg (f ) with that for the left regular representation.

If G is discrete, the lemma is obvious from the correspondence between
maps of locally compact spaces and homomorphisms of commutative
C*-algebras. (In the general case, one needs to check that the two
continuity conditions correspond properly.)
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Examples of group actions on spaces
An action of G on X is a continuous map (g , x) 7→ gx from G × X to X
such that:

1 · x = x for all x ∈ X .

g(hx) = (gh)x for all g , h ∈ G and x ∈ X .

Every action on this list of a group G on a compact space X gives an
action of G on C (X ).

Any group G has a trivial action on any space X , given by gx = x for
all g ∈ G and x ∈ X .

Any group G acts on itself by (left) translation: gh is the usual
product of g and h.

The finite cyclic group Zn acts on the unit circle S1 ⊂ C by rotation:
the standard generator acts as multiplication by e2πi/n.

Z2 acts on S1 via the order two homeomorphism ζ 7→ ζ.

Z2 acts on Sn via the order two homeomorphism x 7→ −x .
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More examples of group actions on spaces

Fix θ ∈ R. Then there is an action of Z on S1, given by
n · ζ = e2πinθζ for n ∈ Z and ζ ∈ S1. (This action is generated by the
rotation homeomorphism ζ 7→ e2πiθζ.)

If G is a group and H is a (closed) subgroup (not necessarily normal),
then G has a translation action on X = G/H, given by
g · (kH) = (gk)H for g , k ∈ G .

If G is a group and σ : G → H is a continuous homomorphism to
another group H, then there is an action of G on X = H given by
g · h = σ(g)h for g ∈ G and h ∈ H. For example, G might be a
closed subgroup of H. (The action on the previous slide of Zn on S1

by rotation comes this way.) The previous example comes from the
homomorphism Z→ S1 given by n 7→ e2πiθ. If θ 6∈ Q, this
homomorphism has dense range.

Let Y be a compact space, and set X = Y × Y . Then G = Z2 acts
on X via the order two homeomorphism (y1, y2) 7→ (y2, y1). Similarly,
the symmetric group Sn acts on Y n.
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Group actions on noncommutative C*-algebras

Some elementary examples:

For every group G and every C*-algebra A, there is a trivial action
ι : G → Aut(A), defined by ιg (a) = a for all g ∈ G and a ∈ A.

Suppose g 7→ zg is a (continuous) homomorphism from G to the
unitary group U(A) of a unital C*-algebra A. Then αg (a) = zgaz

∗
g

defines an action of G on A. (We write αg = Ad(zg ).) This is an
inner action. (If A is not unital, use the multiplier algebra M(A), and
the strict topology on its unitary group.)

As a special case, let G be a finite group, and let g 7→ zg be a unitary
representation of G on Cn. Then g 7→ Ad(zg ) defines an action of G
on Mn.

Exercise

Prove that, in the second example above, g 7→ Ad(zg ) really is a
continuous action of G on A.
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Pointwise inner does not imply inner
Let A be a unital C*-algebra. An automorphism ϕ ∈ Aut(A) is inner if
there is a unitary z ∈ A such that ϕ = Ad(z). Recall also that
α : G → Aut(A) is inner if there is a homomorphism g 7→ zg from G to
U(A) such that αg = Ad(zg ) for all g ∈ G .

Let A = M2, let G = (Z2)2 with generators g1 and g2, and set

α1 = idA, αg1 = Ad

(
1 0
0 −1

)
,

αg2 = Ad

(
0 1
1 0

)
, and αg1g2 = Ad

(
0 1
−1 0

)
.

These define an action α : G → Aut(A) such that αg is inner for all
g ∈ G , but for which there is no homomorphism g 7→ zg ∈ U(A) for which
αg = Ad(zg ) for all g ∈ G . The point is that the implementing unitaries
for αg1 and αg2 commute up to a scalar, but can’t be appropriately
modified to commute exactly. Exercise: Prove this.
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Infinite tensor product actions
We describe a particular infinite tensor product action. (It is an example of
what is called a “product type action” in the literature.). Let
An = (M2)⊗n, the tensor product of n copies of the algebra M2 of 2× 2
matrices. Thus An

∼= M2n . Define

ϕn : An → An+1 = An ⊗M2

by ϕn(a) = a⊗ 1. Let A be the (completed) direct limit lim−→n
An. (This is

just the 2∞ UHF algebra.) Define a unitary v ∈ M2 by

v =

(
1 0
0 −1

)
.

Define zn ∈ An by zn = v⊗n. Define αn ∈ Aut(An) by αn = Ad(zn). Then
αn is an inner automorphism of order 2. Using zn+1 = zn ⊗ v , one can
easily check that ϕn ◦ αn = αn+1 ◦ ϕn for all n (diagram on next slide;
exercise: prove this), and it follows that the αn determine an order 2
automorphism α of A. Thus, we have an action of Z2 on A.
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Infinite tensor product action example (continued)

Recall: An = (M2)⊗n ∼= M2n .

ϕn : An → An+1 = An ⊗M2 is ϕn(a) = a⊗ 1, and A = lim−→n
An.

v =
(
1 0
0 −1

)
∈ U(M2), and zn = v⊗n ∈ U(An).

αn ∈ Aut(An) is αn = Ad(zn).

Commutative diagram to define the order 2 automorphism α ∈ Aut(A):

C ϕ0−−−−→ M2
ϕ1−−−−→ M4

ϕ2−−−−→ M8
ϕ3−−−−→ · · · −−−−→ Ayα0

yα1

yα2

yα3

yα
C ϕ0−−−−→ M2

ϕ1−−−−→ M4
ϕ2−−−−→ M8

ϕ3−−−−→ · · · −−−−→ A

The action of Z2 is not inner (see later), although it is “approximately
inner” (that is, a pointwise limit of inner actions).
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