
Lecture 4: Crossed Products by Actions with the
Rokhlin Property

N. Christopher Phillips

University of Oregon

18 July 2016

N. C. Phillips (U of Oregon) Crossed Products by Rokhlin Actions 18 July 2016 1 / 39



The Second Summer School on Operator Algebras
and Noncommutative Geometry 2016

East China Normal University, Shanghai

11–29 July 2016

Lecture 1 (11 July 2016): Group C*-algebras and Actions of Finite
Groups on C*-Algebras
Lecture 2 (13 July 2016): Introduction to Crossed Products and More
Examples of Actions.
Lecture 3 (15 July 2016): Crossed Products by Finite Groups; the
Rokhlin Property.
Lecture 4 (18 July 2016): Crossed Products by Actions with the
Rokhlin Property.
Lecture 5 (19 July 2016): Crossed Products of Tracially AF Algebras
by Actions with the Tracial Rokhlin Property.
Lecture 6 (20 July 2016): Applications and Problems.

N. C. Phillips (U of Oregon) Crossed Products by Rokhlin Actions 18 July 2016 2 / 39



The Second Summer School on Operator Algebras
and Noncommutative Geometry 2016

East China Normal University, Shanghai

11–29 July 2016

Lecture 1 (11 July 2016): Group C*-algebras and Actions of Finite
Groups on C*-Algebras
Lecture 2 (13 July 2016): Introduction to Crossed Products and More
Examples of Actions.
Lecture 3 (15 July 2016): Crossed Products by Finite Groups; the
Rokhlin Property.
Lecture 4 (18 July 2016): Crossed Products by Actions with the
Rokhlin Property.
Lecture 5 (19 July 2016): Crossed Products of Tracially AF Algebras
by Actions with the Tracial Rokhlin Property.
Lecture 6 (20 July 2016): Applications and Problems.

N. C. Phillips (U of Oregon) Crossed Products by Rokhlin Actions 18 July 2016 2 / 39



The Second Summer School on Operator Algebras
and Noncommutative Geometry 2016

East China Normal University, Shanghai

11–29 July 2016

Lecture 1 (11 July 2016): Group C*-algebras and Actions of Finite
Groups on C*-Algebras
Lecture 2 (13 July 2016): Introduction to Crossed Products and More
Examples of Actions.
Lecture 3 (15 July 2016): Crossed Products by Finite Groups; the
Rokhlin Property.
Lecture 4 (18 July 2016): Crossed Products by Actions with the
Rokhlin Property.
Lecture 5 (19 July 2016): Crossed Products of Tracially AF Algebras
by Actions with the Tracial Rokhlin Property.
Lecture 6 (20 July 2016): Applications and Problems.

N. C. Phillips (U of Oregon) Crossed Products by Rokhlin Actions 18 July 2016 2 / 39



A rough outline of all six lectures

The beginning: The C*-algebra of a group.

Actions of finite groups on C*-algebras and examples.

Crossed products by actions of finite groups: elementary theory.

More examples of actions.

Crossed products by actions of finite groups: Some examples.

The Rokhlin property for actions of finite groups.

Examples of actions with the Rokhlin property.

Crossed products of AF algebras by actions with the Rokhlin property.

Other crossed products by actions with the Rokhlin property.

The tracial Rokhlin property for actions of finite groups.

Examples of actions with the tracial Rokhlin property.

Crossed products by actions with the tracial Rokhlin property.

Applications of the tracial Rokhlin property.
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The Rokhlin property

Definition

Let A be a unital C*-algebra, and let α : G → Aut(A) be an action of a
finite group G on A.

Then α has the Rokhlin property if for every finite set
F ⊂ A and every ε > 0, there are projections eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1. (In particular, the projections eg are orthogonal.)

Let G be a finite group. Recall from the exercises in Lecture 3:

1 The action of G on G by translation gives an action of G on C (G )
(namely αg (f )(h) = f (g−1h)) with the Rokhlin property.

2 Let A be any unital C*-algebra. The action of G on
⊕

g∈G A by
translation of the summands has the Rokhlin property.

3 Let G act freely on the Cantor set X . Then the corresponding action
of G on C (X ) has the Rokhlin property.
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α : G → Aut(A) has the Rokhlin property if for every finite set F ⊂ A and
every ε > 0, there are projections eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .
2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .
3
∑

g∈G eg = 1.

Exercise: Let T ⊂ A be dense. Suppose that we prove the conditions
above for every finite subset F ⊂ T . Then α has the Rokhlin property.

Exercise: More generally, prove the following lemma.

Lemma

Let α : G → Aut(A) be an action of a finite group G on a unital
C*-algebra A. Let T ⊂ A generate A as a C*-algebra. Suppose that for
every finite set F ⊂ T and every ε > 0, there are projections eg ∈ A for
g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

Then α has the Rokhlin property.
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Using a generating set
Exercise: Prove the following lemma.
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2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

Then α has the Rokhlin property.

Hint 1: The *-algebra generated by T is dense.
Hint 2: F only appears in condition (2). If, say, a and b approximately
commute with eg , then ab approximately commutes with eg because

‖abeg − egab‖ =
∥∥a(beg − egb) + (ega− aeg )b

∥∥
≤ ‖a‖ · ‖beg − egb‖+ ‖ega− aeg‖ · ‖b‖.
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A Rokhlin action on a simple C*-algebra
The conditions in the definition of the Rokhlin property, for ε > 0 and a
finite set F ⊂ A:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

We want an example in which A is simple. Thus, we won’t be able to
satisfy condition (2) by choosing eg to be in the center of A.

Set

w =

(
0 1
1 0

)
.

Recall: Ad(v)(a) = vav∗. Let α be the product type action of Z2

generated by

β =
∞⊗
n=1

Ad(w) on A =
∞⊗
n=1

M2.

We will show that this action has the Rokhlin property.
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An example (continued)

We had

w =

(
0 1
1 0

)
.

The action α of Z2 is generated by

β =
∞⊗
n=1

Ad(w) on A =
∞⊗
n=1

M2.

Define projections p0, p1 ∈ M2 by

p0 =

(
1 0
0 0

)
and p1 =

(
0 0
0 1

)
.

Then
wp0w

∗ = p1, wp1w
∗ = p0, and p0 + p1 = 1.
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The action α : Z2 → Aut(A) is generated by β =
⊗∞

n=1 Ad(w) on
A =

⊗∞
n=1M2. Also, in M2, wp0w

∗ = p1, wp1w
∗ = p0, and p0 + p1 = 1.

Recall the conditions in the definition of the Rokhlin property, specialized
to G = Z2. F ⊂ A is finite, ε > 0, and we want projections e0 and e1 such
that:

1 ‖β(e0)− e1‖ < ε and ‖β(e1)− e0‖ < ε.

2 ‖e0a− ae0‖ < ε and ‖e1a− ae1‖ < ε for all a ∈ F .

3 e0 + e1 = 1.

Since the union of the subalgebras (M2)⊗n = An is dense in A, we can
assume F ⊂ An for some n. (See above.)

For g = 0, 1 ∈ Z2, take

eg = 1An ⊗ pg ∈ An ⊗M2 = An+1 ⊂ A.

Clearly e0 + e1 = 1. Check that β(e0) = e1 and β(e1) = e0, and that e0
and e1 actually commute with everything in F . (Proofs: See the next
slide.) This proves the Rokhlin property.
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An example (continued)
The projections e0 and e1 actually commute with everything in F ,
essentially because the nontrival parts are in different tensor factors.

Explicitly: Everything is in An+1 = M2n+1 , which we identify with
M2n ⊗M2. In this tensor factorization,

eg = 1⊗ pg ,

and elements of F have the form

a⊗ 1.

Clearly these commute.

For β(e0) = e1: we have β|An+1 = Ad
(
w⊗n ⊗ w

)
, so

β(e0) =
(
w⊗n ⊗ w

)
(1⊗ p0)

(
w⊗n ⊗ w

)∗
= 1⊗ wp0w

∗ = 1⊗ p1 = e1.

The proof that β(e1) = e0 is the same. We are done.
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Some other actions with the Rokhlin property

Let G be a finite group, and set n = card(G ). Let g 7→ vg be the left
regular representation of G on l2(G ), identify L(l2(G )) with Mn, and let
A =

⊗∞
k=1Mn be the n∞ UHF algebra.

Then the action

g 7→ αg =
∞⊗
n=1

Ad(vg )

of G on A has the Rokhlin property.

The example we just did is the case G = Z2, and the proof in the general
case is the same.

Exercise: Write down a detailed proof that this action has the Rokhlin
property.
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Yet more actions with the Rokhlin property
Let G be a finite group, and set n = card(G ).

Let On be the Cuntz algebra. (Cuntz algebras, and some actions on them,
are discussed in the appendix to Lecture 3.) However, call its generators sg
for g ∈ G . The relations are thus

s∗g sg = 1

for all g ∈ G , and ∑
g∈G

sg s
∗
g = 1.

There is an action γ : G → Aut(On) such that

γg (sh) = sgh

for g , h ∈ G . This action is a special case of the quasifree actions on
Cuntz algebras in the appendix to Lecture 3. It turns out to have the
Rokhlin property (Izumi).
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Actions on Cuntz algebras (continued)

Take G = Z2 on the previous slide. The resulting action γ of Z2 on O2 is
generated by the order 2 automorphism determined by s1 7→ s2 and
s2 7→ s1.

The action of Z2 on O2 generated by s1 7→ s1 and s2 7→ −s2 is conjugate
to the one gotten using G = Z2 above, so also has the Rokhlin property.

Exercise (if you know about Cuntz algebras): Prove this conjugacy. Hint:
Use an automorphism of O2 of the same sort as those that appeared in
the definition of quasifree actions in Cuntz algebras as in the appendix to
Lecture 3. (It will come from a unitary operator on C2.)

The quasifree action of Z2 on O2 generated by s1 7→ −s1 and s2 7→ −s2
turns out to be pointwise outer but not to have the Rokhlin property.
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Exactly permuting the projections
Recall the conditions in the definition of the Rokhlin property. F ⊂ A is
finite, ε > 0, and we want projections eg such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

Theorem (2011)

Let α : G → Aut(A) be an action of a finite group G on A. Then α has the
Rokhlin property if and only if for every finite set F ⊂ A and every ε > 0,
there are mutually orthogonal projections eg ∈ A for g ∈ G such that:

1 αg (eh) = egh for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3
∑

g∈G eg = 1.

The difference is that in (1) we require exact equality.
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Exactly permuting the projections (continued)

In the definition of the Rokhlin property, one can replace
“‖αg (eh)− egh‖ < ε for all g , h ∈ G” with “αg (eh) = egh for all g , h ∈ G”.

The proof uses methods (equivariant semiprojectivity) unrelated to those
here. This result simplifies some proofs by replacing some approximate
equalities by equalities, so we will assume it, but it makes no real
difference.

(This simplification has not been made in the crossed product
notes—proving the theorem is more complicated than doing without it.)
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AF algebras
The traditional definition is that a C*-algebra A is an AF algebra if there is
an increasing sequence

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A

of finite dimensional subalgebras of A such that
⋃∞

n=0 An = A.

This is the
same as asking for a direct system (Bn)n∈N of finite dimensional
C*-algebras [with injective maps] such that lim

−→
Bn
∼= A. Examples: The

UHF algebras we have already seen; K (H); C (X ) for the Cantor set X .

We are interested in unital AF algebras. Exercise: Show that if A is a
unital AF algebra, then the subalgebras An above can all be taken to
contain 1A. (In the direct limit definition, one can require that all the
maps in the system be unital.)

Convention: When we refer to a unital subalgebra C of a unital
C*-algebra A, we mean that 1A ∈ C . Thus, we can restate the unital case
as: A unital C*-algebra A is AF if there is an increasing sequence
A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A of finite dimensional unital subalgebras of A such
that

⋃∞
n=0 An = A.
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AF algebras (continued)

A unital C*-algebra A is AF if there is an increasing sequence

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A

of finite dimensional unital subalgebras of A such that
⋃∞

n=0 An = A.

AF algebras were introduced by Bratteli. They are one of the first classes
of C*-algebras not of type I for which a substantial theory was developed.

Elliott proved that if AF algebras A and B have isomorphic scaled ordered
K0 groups, then A ∼= B. In retrospect, this was the beginning of the Elliott
classification program.

Effros, Handelman, and Shen gave a simple description of all possible
scaled ordered K0 groups of AF algebras.

AF algebras are still a basic set of examples, and work on them continues
to this day.
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⋃∞

n=0 An = A.

The following result is the unital case of a characterization due to Bratteli.

Theorem (Bratteli)

Let A be a separable unital C*-algebra. Then the following are equivalent:

1 A is a AF algebra.

2 For every finite set F ⊂ A and every ε > 0, there is a unital finite
dimensional subalgebra D ⊂ A such that dist(a,D) < ε for all a ∈ F .

To prove that (1) implies (2), write A =
⋃∞

n=0 An as above, and take
D = An for sufficiently large n. Exercise: Check this.

The reverse implication requires more work. Discussion: Next slide.
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AF algebras (continued)
Assume that for every finite set F ⊂ A and every ε > 0, there is a unital
finite dimensional subalgebra D ⊂ A such that dist(a,D) < ε for all a ∈ F .

We want to prove that there is an increasing sequence

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A

of unital finite dimensional subalgebras of A such that
⋃∞

n=0 An = A.

One can use the hypothesis for finite subsets F0 ⊂ F1 ⊂ · · · with dense
union and numbers εn → 0 to construct unital finite dimensional
subalgebras An ⊂ A whose union is dense in A (exercise: Check density of
the union), but it requires work to arrange to have An ⊂ An+1. One can
get An+1 to approximately contain An by adding the standard matrix units
for An to the finite set Fn+1 and making εn+1 smaller, but this isn’t quite
what is wanted.

The perturbation arguments required to get exact containment eventually
developed into the subject of semiprojectivity. We don’t have time to
discuss semiprojectivity here.
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Actions on AF algebras
A unital C*-algebra A is AF if there is an increasing sequence

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A

of finite dimensional unital subalgebras of A such that
⋃∞

n=0 An = A.

Let α : G → Aut(A) be an action of a finite group G on a unital
AF algebra A. One might hope that C ∗(G ,A, α) would again be AF.

The algebraic version of this is true. That is, if a complex *-algebra A can
be written as A =

⋃∞
n=0 An for finite dimensional C*-algebras

A0 ⊂ A1 ⊂ · · · , and if α : G → Aut(A) is an action of a finite group G
on A, then the algebraic crossed product is again an increasing union of
the same type.

The idea is to replace A0 ⊂ A1 ⊂ · · · with finite dimensional C*-algebras
B0 ⊂ B1 ⊂ · · · such that αg (Bn) ⊂ Bn for all g ∈ G and n ∈ N.

Exercise: Carry it out. Hint: To start, the subalgebra generated by⋃
g∈G αg (A0) is contained in An for some n.
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Actions on AF algebras (continued)

A unital C*-algebra A is AF if there is an increasing sequence

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A

of finite dimensional unital subalgebras of A such that
⋃∞

n=0 An = A.

Let α : G → Aut(A) be an action of a finite group G on a unital
AF algebra A. One might hope that C ∗(G ,A, α) would again be AF. If
one uses algebraic direct limits, this is in fact true.

The C* version was open for some time, but turns out to be false. (The
hint in the exercise on the previous slide doesn’t work.) If A is AF, then
K1(A) = 0, K0(A) is torsion free, and A has real rank zero (definition
omitted). There are (separate) examples of actions of Z2 on simple
AF algebras such that the crossed product has nonzero K1 (Blackadar),
does not have real rank zero (Elliott), and has torsion in K0.
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Crossed products by actions with the Rokhlin property

A structure theorem for crossed products by actions with the Rokhlin
property:

Theorem

Let A be a unital AF algebra. Let G be a finite group, and let
α : G → Aut(A) have the Rokhlin property. Then C ∗(G ,A, α) is AF.

Crossed products by actions of finite groups with the Rokhlin property
preserve many other structural properties of C*-algebras. (See below.)
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Crossed products by actions with the Rokhlin property
Let A be a unital AF algebra. Let G be a finite group, and let
α : G → Aut(A) have the Rokhlin property. We claim C ∗(G ,A, α) is AF.

The basic idea (details later). Set n = card(G ). Recall that

C ∗(G ,A, α) = A[G ] =

{∑
g∈G

cg · ug : cg ∈ A for g ∈ G

}
.

and (a · ug )(b · uh) = (aαg (b)) · ugh.

Let eg ∈ A, for g ∈ G , be Rokhlin projections, with αg (eh) = egh for all
g , h ∈ G . Then span

(
{eg : g ∈ G}

)
is a G -invariant subalgebra isomorphic

to C (G ) with the action from translation of G on G . Let
ug ∈ C ∗(G ,A, α) be the canonical unitary implementing the
automorphism αg . Then vg ,h = egugh−1 defines a system of matrix units
in C ∗(G ,A, α). (This is essentially the same formula as was used in the
proof that C ∗(G , C (G )) ∼= Mn.) Using the homomorphism
Mn ⊗ e1Ae1 → C ∗(G ,A, α) given by vg ,h ⊗ d 7→ vg ,1dv1,h, one can
approximate C ∗(G ,A, α) by matrix algebras over corners of A.
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Idea of the proof
A is an AF algebra, G is a finite group, and α : G → Aut(A) has the
Rokhlin property. We want to approximate a finite set S ⊂ C ∗(G ,A, α) by
a finite dimensional subalgebra.

It turns out that it suffices to consider finite subsets of some generating
set. (The argument is easier than the corresponding argument for the
Rokhlin property. Exercise: Do it.) So we assume S = F ∪ {ug : g ∈ G},
with F ⊂ A finite and ug ∈ C ∗(G ,A, α) the standard unitary
corresponding to g ∈ G .

We will find an AF algebra D ⊂ C ∗(G ,A, α) which approximately
contains S . It is not hard to see that this is enough. (Exercise: check
this!) We give a sketch first, and then a careful proof (with some steps left
as exercises).

Preliminary exercise: Let B be a C*-algebra and let q ∈ B be a projection.
Show that qBq is a C*-algebra, with identity q.
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Idea of the proof (continued)
A is an AF algebra, G is a finite group, and α : G → Aut(A) has the
Rokhlin property. Our finite set is S = F ∪ {ug : g ∈ G} ⊂ C ∗(G ,A, α),
with F ⊂ A finite. We will approximate S by an AF algebra.

Apply the Rokhlin property to the finite set F . Use the version in which
the projections are exactly permuted by the group. Thus, we get
projections eg ∈ A for g ∈ G such that:

1 αg (eh) = egh for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .
3
∑

g∈G eg = 1. (In particular, the projections eg are orthogonal.)

Informally: ega ≈ aeg for all g ∈ G and all a ∈ F .

In particular, for g 6= h and a ∈ F , egaeh ≈ aegeh = 0. Therefore, if a ∈ F ,

a =
∑

g ,h∈G
egaeh ≈

∑
g∈G

egaeg .

That is, a is approximately in D0 =
∑

g∈G egAeg ⊂ A.
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Idea of the proof (continued)
A is an AF algebra, G is a finite group, and α : G → Aut(A) has the
Rokhlin property. Our finite set is S = F ∪ {ug : g ∈ G} ⊂ C ∗(G ,A, α),
with F ⊂ A finite. We will approximate S by an AF algebra. We chose
Rokhlin projections eg ∈ A for g ∈ G .

We have found that F is approximately contained in the unital subalgebra
(justification for subalgebra and direct sum below)

D0 =
∑
g∈G

egAeg =
⊕
g∈G

egAeg ⊂ A.

The sum is direct because the projections eg are orthogonal, and D0 is
unital because

∑
g∈G eg = 1. Exercise: Prove that if B is a C*-algebra

and p1, p2, . . . , pn ∈ B are mutually orthogonal projections, then∑n
k=1 pkBpk is a C* subalgebra of B isomorphic to

⊕n
k=1 pkBpk .

Recall that we are assuming that αg (eh) = egh for all g , h ∈ G . Exercise:
Use this to prove that D0 is G -invariant.
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Rokhlin projections eg ∈ A for g ∈ G , and we found that
D0 =

⊕
g∈G egAeg is a unital G -invariant subalgebra of A which

approximately contains F .

The action of G permutes the summands. Exercise: Prove that D0 is
equivariantly isomorphic to C (G , e1Ae1) with the action
βg (b)(h) = b(g−1h) for g , h ∈ G and b ∈ C (G , e1Ae1).

Set n = card(G ). We showed before that C ∗(G , C (G )) ∼= Mn. Exercise:
Use the same method to prove that if B is any unital C*-algebra, and
β : G → Aut(C (G ,B)) is the action βg (b)(h) = b(g−1h) for g , h ∈ G and
b ∈ C (G ,B), then C ∗(G , C (G ,B)) ∼= Mn(B).

Set D = C ∗(G ,D0, α) ⊂ C ∗(G ,A, α). Thus D ∼= Mn(e1Ae1).
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Rokhlin property. Our finite set is S = F ∪ {ug : g ∈ G} ⊂ C ∗(G ,A, α),
with F ⊂ A finite. We got D ⊂ C ∗(G ,A, α) as D = C ∗(G ,D0, α), in
which D0 ⊂ A is a unital subalgebra which approximately contains F .

Since D0 is unital, ug ∈ D for all g ∈ G . Therefore D approximately
contains S = F ∪ {ug : g ∈ G}, as wanted.

All that remains is to show that D is AF. Recall that D ∼= Mn(e1Ae1).

It is a general fact that if C is an AF algebra and q ∈ C is a projection,
then qCq is an AF algebra. (Suppose C =

⋃∞
n=0 Cn for an increasing

sequence of finite dimensional C*-algebras (Cn)n∈N. Using methods from
K-theory, show that q is unitarily equivalent to a projection in one of
the Cn. Now the result is easy. Exercise: Write out the details.) Since
e1Ae1 is AF, so is D ∼= Mn(e1Ae1).
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A future modification of the argument

We want to approximate elements of C ∗(G ,A, α) using unital
homomorphisms from Mn ⊗ e1Ae1 to C ∗(G ,A, α).

In Lecture 5, we are going to need the same argument again, but under
slightly weaker conditions. We will still assume that the projections eg are
orthogonal, are exactly permuted by the group action, and can be chosen
to approximately commute with a given finite subset of A. However, the
sum e =

∑
g∈G eg will no longer necessarily be equal to 1.

We can nevertheless carry out the same argument; we get unital
homomorphisms from Mn ⊗ e1Ae1 to eC ∗(G ,A, α)e, and we just get the
weaker conclusion that we can approximate a finite set in eC ∗(G ,A, α)e,
rather than one in C ∗(G ,A, α), by a matrix algebra over a corner of A.
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Crossed products by actions with the Rokhlin property
(continued)

Recall the conclusion of the theorem: C ∗(G ,A, α) is AF.

To prove the theorem, we prove that for every finite set S ⊂ C ∗(G ,A, α)
and every ε > 0, there is an AF subalgebra D ⊂ C ∗(G ,A, α) such that
every element of S is within ε of an element of D.

Let ug ∈ C ∗(G ,A, α)
be the canonical unitary implementing the automorphism αg . Thus, a
general element has the form

∑
g∈G cgug , with cg ∈ A for g ∈ G . It

suffices to consider a finite set of the form S = F ∪ {ug : g ∈ G}, where F
is a finite subset of A. So let F ⊂ A be a finite subset and let ε > 0.

Set
n = card(G ) and δ =

ε

n(n − 1)
.
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Crossed products by actions with the Rokhlin property
(continued)

We had: S = F ∪ {ug : g ∈ G}, with F a finite subset of A.

Apply the Rokhlin property to α with F as given and with δ in place of ε,
obtaining projections eg ∈ A for g ∈ G such that αg (eh) = egh for
g , h ∈ G , ‖ega− aeg‖ < δ for g ∈ G and a ∈ F , and

∑
g∈G eg = 1.

Define vg ,h = egugh−1 for g , h ∈ G . In particular, vg ,g = eg , so the vg ,g
are orthogonal projections which add up to 1.

We claim that the vg ,h form a system of n× n matrix units in C ∗(G ,A, α).
Recall for comparison: when proving that C ∗(G , C (G )) ∼= Mn, we used
the matrix units vg ,h = χ{g}ugh−1 . The computation here is exactly the
same as there, so we don’t repeat it.
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Crossed products by actions with the Rokhlin property
(continued)

We had: (vg ,h)g ,h∈G is an n × n system of matrix units in C ∗(G ,A, α).

Let (wg ,h)g ,h∈G be a system of matrix units for Mn. There is a unital
homomorphism ϕ0 : Mn → C ∗(G ,A, α) such that ϕ0(wg ,h) = vg ,h for all
g , h ∈ G . In particular, ϕ0(wg ,g ) = eg for all g ∈ G .

Now define a unital homomorphism ϕ : Mn ⊗ e1Ae1 → C ∗(G ,A, α) by
ϕ(wg ,h ⊗ d) = vg ,1dv1,h for g , h ∈ G and d ∈ e1Ae1.

Exercise: Prove that ϕ is a *- homomorphism.

Corners of AF algebras are AF, and ϕ is injective, so D = ϕ(Mn ⊗ e1Ae1)
is an AF subalgebra of C ∗(G ,A, α). We complete the proof by showing
that every element of S is within ε of an element of D. Recall that
S = F ∪ {ug : g ∈ G}, and F is a finite subset of A.
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Crossed products by actions with the Rokhlin property
(continued)

We have to approximate elements of S = F ∪ {ug : g ∈ G} by elements of
D = ϕ(Mn ⊗ e1Ae1).

We first consider ug with g ∈ G . In fact, for ug no approximation is
necessary. Recall that vg ,h = egugh−1 . We have

ϕ

(∑
h∈G

wh,g−1h

)
= ϕ0

(∑
h∈G

wh,g−1h

)
=
∑
h∈G

vh,g−1h =
∑
h∈G

ehug = ug .
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Approximating elements of F

We have to approximate elements of S = F ∪ {ug : g ∈ G}, with F ⊂ A
finite, by elements of D = ϕ(Mn ⊗ e1Ae1). Recall that vg ,h = egugh−1 , and
that ϕ : Mn ⊗ e1Ae1 → C ∗(G ,A, α) is defined by ϕ(wg ,h ⊗ d) = vg ,1dv1,h
for g , h ∈ G and d ∈ e1Ae1. We already took care of ug .

Let a ∈ F . The obvious first step in approximating a is to use∑
g∈G

egaeg .

In fact, one needs to (implicitly) use this approximation in the form∑
g∈G

αg

(
e1α
−1
g (a)e1

)
.

This happens because the definition of ϕ sends wg ,h ⊗ d , for d ∈ e1Ae1, to
an element obtained by using the action of the group elements g and h.
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Approximating elements of F (continued)
We have to approximate elements of S = F ∪ {ug : g ∈ G}, with F ⊂ A
finite, by elements of D = ϕ(Mn ⊗ e1Ae1). We already took care of ug ,
but we still need to deal with a ∈ F .

There are two steps:

1 Show that
∥∥∥a−∑g∈G egaeg

∥∥∥ < ε.

2 Show that
∑

g∈G egaeg is in the range of ϕ.

Once we have these, we are done: we have dist(a,D) < ε.

Step 1: Recall that n = card(G ). We chose δ > 0 so that n(n − 1)δ = ε,
and we chose Rokhlin projections eg ∈ A such that ‖ega− aeg‖ < δ for
a ∈ F and g ∈ G . For g 6= h, we therefore have

‖egaeh‖ ≤ ‖ega− aeg‖+ ‖aegeh‖ = ‖ega− aeg‖ < δ.

So ∥∥∥a−∑
g∈G

egaeg

∥∥∥ ≤∑
g 6=h
‖egaeh‖ < n(n − 1)δ = ε.

This finishes step 1.
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Approximating elements of F (conclusion)
To finish the proof of the theorem, we need only do step 2 from the
previous slide: Show that

∑
g∈G egaeg is in the range of the map

ϕ : Mn ⊗ e1Ae1 → C ∗(G ,A, α).

Recall that vg ,h = egugh−1 , that (vg ,h)g ,h∈G is a system of n × n matrix
units in C ∗(G ,A, α), and that ϕ(wg ,h ⊗ d) = vg ,1dv1,h.

Set
b =

∑
g∈G

wg ,g ⊗ e1α
−1
g (a)e1 ∈ Mn ⊗ e1Ae1.

Now (justifications given afterwards):

ϕ(b) =
∑

g∈G
vg ,1e1α

−1
g (a)e1v

∗
g ,1 =

∑
g∈G

eguge1α
−1
g (a)e1u

∗
geg

=
∑

g∈G
egαg

(
e1α
−1
g (a)e1

)
eg =

∑
g∈G

egaeg .

The first step uses v∗g ,1 = v1,g (matrix unit property). The second step is
the definition of vg ,1. The third step is the fact that ug implements αg .
The fourth step is αg (e1) = eg and e2g = eg .

This completes the proof of the theorem.
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Other structural consequences of the Rokhlin property
Crossed products by actions of finite groups with the Rokhlin property
preserve various other classes of C*-algebras. In many cases, the proofs are
similar to what we did for AF algebras. Some examples of such classes:

1 Simple unital C*-algebras.
2 Various classes of unital but not necessarily simple countable direct

limit C*-algebras using semiprojective building blocks. (With Osaka.)
3 Simple unital AH algebras with slow dimension growth and real rank

zero. (With Osaka.)
4 D-absorbing separable unital C*-algebras for a strongly self-absorbing

C*-algebra D. (Hirshberg-Winter.)
5 Separable nuclear unital C*-algebras whose quotients all satisfy the

Universal Coefficient Theorem. (With Osaka.)
6 Separable unital approximately divisible C*-algebras.

(Hirshberg-Winter.)
7 Unital C*-algebras with the ideal property and unital C*-algebras with

the projection property. (With Pasnicu.)
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