Strict comparison for crossed products by free minimal actions of \mathbb{Z}^{d} : Supplementary slides

N. Christopher Phillips
University of Oregon
and
Research Institute for Mathematical Sciences, Kyoto

9 September 2011

Conference on C*-Algebras and Related Topics

Research Institute for Mathematical Sciences, Kyoto University

Kyoto, Japan

5-9 September 2011

Appendix 1: Recursive subhomogeneous C^{*}-algebras

Definition

A recursive subhomogeneous C^{*}-algebra is a C^{*}-algebra isomorphic to one of the form

$$
B=\left[\cdots\left[\left[C_{0} \oplus_{C_{1}^{(0)}} C_{1}\right] \oplus_{C_{2}^{(0)}} C_{2}\right] \cdots\right] \oplus_{C_{1}^{(0)}} C_{l},
$$

with $C_{k}=C\left(X_{k}, M_{n(k)}\right)$ for compact Hausdorff spaces X_{k} and positive integers $n(k)$, with $C_{k}^{(0)}=C\left(X_{k}^{(0)}, M_{n(k)}\right)$ for compact subsets $X_{k}^{(0)} \subset X_{k}$ (possibly empty), and where the maps $C_{k} \rightarrow C_{k}^{(0)}$ are always the restriction maps and the other maps determining the pullbacks are unital.
An expression like this is a recursive subhomogeneous decomposition of B.
The topological dimension of the decomposition is $\max \left(\operatorname{dim}\left(X_{0}\right), \operatorname{dim}\left(X_{1}\right), \ldots, \operatorname{dim}\left(X_{l}\right)\right)$.

Appendix 2: Sketch of proof that if B is large in A and B has strict comparison, then so does A.

Theorem

Let A be an infinite dimensional stably finite simple separable unital exact C^{*}-algebra. Let $B \subset A$ be large. Then $\operatorname{rc}(A)=\operatorname{rc}(B)$.

We will sketch the proof of the case needed for this talk, which is $\operatorname{rc}(B)=0$ implies $\operatorname{rc}(A)=0$. That is, if B has strict comparison of positive elements, then so does A.

Appendix 2: Strict comparison (continued)

This condition says that B is "large" in A :
(1) For every $\varepsilon>0$ and nonzero y in B_{+}, whenever $a_{1}, a_{2}, \ldots, a_{n} \in A$ satisfy $0 \leq a_{j} \leq 1$ for $j=1,2, \ldots, n$, then there are a continuous function $g: X \rightarrow[0,1]$ and $b_{1}, b_{2}, \ldots, b_{n} \in A$ such that:
(1) $0 \leq b_{j} \leq 1$ for $j=1,2, \ldots, n$.
(2) $\left\|b_{j}-a_{j}\right\|<\varepsilon$ for $j=1,2, \ldots, n$.
(3) $(1-g) b_{j} \in B$ for $j=1,2, \ldots, n$.
(1) $g \precsim y$.

Recall that for $\tau \in T(A)$, we define $d_{\tau}(a)=\lim _{n \rightarrow \infty} \tau\left(a^{1 / n}\right)$ for $a \in M_{\infty}(A)_{+}$.
Strict comparison of positive elements means that $d_{\tau}(a)<d_{\tau}(b)$ for all $\tau \in T(A)$ implies $a \precsim b$.
We want to show strict comparison for B implies strict comparison for A.
The point is that one can push elements into B by cutting out a piece with small trace, as sketched next.

Appendix 2: Strict comparison (continued)

For a C^{*}-algebra B and $a, b \in B_{+}$, recall that $a \precsim b$ if there is a sequence $\left(v_{n}\right)_{n \in \mathbb{Z}_{>0}}$ in B such that $\lim _{n \rightarrow \infty} v_{n} b v_{n}^{*}=a$.
We describe one technical point. For $\varepsilon>0$, define $f_{\varepsilon}:[0, \infty) \rightarrow[0, \infty)$ by $f_{\varepsilon}(t)=\max (0, t-\varepsilon)=(t-\varepsilon)_{+}$. For a positive element a of a C^{*}-algebra, define $(a-\varepsilon)_{+}=f_{\varepsilon}(a)$.

Lemma

Let B be a C*-algebra, and let $a, b \in B_{+}$. Then $a \precsim b$ if and only if $(a-\varepsilon)_{+} \precsim b$ for all $\varepsilon>0$.

This is needed to take care of the approximation in the "largeness" condition on $B \subset A$.

Appendix 2: Strict comparison (continued)

Suppose for simplicity that A has a unique tracial state τ. Then B also has a unique tracial state, namely $\left.\tau\right|_{B}$.
Let $a_{1}, a_{2} \in A$ be positive elements such that $d_{\tau}\left(a_{1}\right)<d_{\tau}\left(a_{2}\right)$. We want to prove that $a_{1} \precsim a_{2}$.

It is enough to show that $\left(a_{1}-\varepsilon\right)_{+} \precsim a_{2}$ for all $\varepsilon>0$.
Let $\varepsilon>0$. Choose $\alpha>0$ appropriately and nonzero $y \in B_{+}$with $d_{\tau}(y)<\alpha$. Choose $b_{1}, b_{2} \in A$ and $g \in C(X)$ with $0 \leq g \leq 1$ such that:
(1) $0 \leq b_{1}, b_{2} \leq 1$.
(2) $\left\|b_{1}-a_{1}\right\|<\alpha$ and $\left\|b_{2}-a_{2}\right\|<\alpha$.
(3) $(1-g) b_{1},(1-g) b_{1} \in B$.
(9) $g \precsim y$.

Set

$$
c_{1}=\left[(1-g) b_{1}(1-g)-\alpha\right]_{+} \quad \text { and } \quad c_{2}=\left[(1-g) b_{2}(1-g)-\alpha\right]_{+}
$$

These are in B.

Appendix 2: Strict comparison (continued)

We had $d_{\tau}\left(a_{1}\right)<d_{\tau}\left(a_{2}\right)$, and we arranged that
(1) $0 \leq b_{1}, b_{2} \leq 1$.
(2) $\left\|b_{1}-a_{1}\right\|<\alpha$ and $\left\|b_{2}-a_{2}\right\|<\alpha$.
(3) $(1-g) b_{1},(1-g) b_{1} \in B$.
(9) $g \precsim y$.

We defined
$c_{1}=\left[(1-g) b_{1}(1-g)-\alpha\right]_{+} \in B \quad$ and $\quad c_{2}=\left[(1-g) b_{2}(1-g)-\alpha\right]_{+} \in B$.
With a bit of work (and good choice of α), we will get:

$$
\left(a_{1}-\varepsilon\right)_{+} \precsim c_{1} \oplus g, \quad c_{2} \precsim a_{2}, \quad \text { and } \quad d_{\tau}\left(c_{1}\right)+\alpha<d_{\tau}\left(c_{2}\right) .
$$

The condition on g implies $d_{\tau}(g) \leq d_{\tau}(y)<\alpha$, so strict comparison for B gives

$$
c_{1} \oplus g \precsim c_{2}
$$

whence $\left(a_{1}-\varepsilon\right)_{+} \precsim a_{2}$.

Appendix 2: Strict comparison (continued)

If B has finitely many extreme tracial states, essentially the same method works.

If B has infinitely many extreme tracial states, one has to work a bit harder, using some more machinery, but one gets the same result.

Appendix 3: Rokhlin towers and partition valued functions

 To get a partition valued function from a system of Rokhlin towers, let $x \in X$. Every time the orbit of x runs through one of the Rokhlin towers, collect the corresponding values of γ in a set in $\mathcal{P}(x)$. More precisely, the sets in $\mathcal{P}(x)$ are in one to one correspondence with elements $\eta \in \mathbb{Z}^{d}$ such that $h^{\eta}(x) \in Y_{j}$ for some j, and the set in $\mathcal{P}(x)$ corresponding to such an element η is $\eta+F_{j}$.It is easily seen that \mathcal{P} is bounded and invariant.
To get a system of Rokhlin towers from a bounded invariant partition valued function \mathcal{P}, choose finite sets $F_{1}, F_{2}, \ldots, F_{m} \subset \mathbb{Z}^{d}$ such that every set in every $\mathcal{P}(x)$ is a translate of exactly one of the sets F_{j}. Define

$$
Y_{j}=\left\{x \in X: F_{j} \in \mathcal{P}(x)\right\} .
$$

For $j=1,2, \ldots, m$ and $\gamma \in F_{j}$, we claim that a point $x \in X$ is in $h^{\gamma}\left(Y_{j}\right)$ if and only if the set in $\mathcal{P}(x)$ which contains $0 \in \mathbb{Z}^{d}$ is $F_{j}-\gamma$.
This holds because, by invariance of \mathcal{P}, we have $x \in h^{\gamma}\left(Y_{j}\right)$ if and only if $F_{j}-\gamma \in \mathcal{P}(x)$.

Appendix 4: The Følner condition

To prove that the subalgebra $A=\overline{\bigcup_{n=0}^{\infty} A_{n}}$ is "large", we will need the finite subsets $F_{j} \subset \mathbb{Z}^{d}$ that occur in the systems of Rokhlin towers

$$
\left(Y_{1}, F_{1}\right),\left(Y_{2}, F_{2}\right), \ldots,\left(Y_{m}, F_{m}\right)
$$

to be $\left(\Sigma_{n}, \varepsilon_{n}\right)$-Følner sets for $\varepsilon_{n}>0$ with $\varepsilon_{n} \rightarrow 0$, and for finite sets $\Sigma_{n} \subset \mathbb{Z}^{d}$ with $\Sigma_{n} \nearrow \mathbb{Z}^{d}$.

Recall that a finite set $F \subset \mathbb{Z}^{d}$ is a (Σ, ε)-Følner set if

$$
\operatorname{card}(F \triangle(\gamma+F)) \leq \varepsilon \cdot \operatorname{card}(F)
$$

for all $\gamma \in \Sigma$.
Let \mathcal{P} be the partition valued function corresponding to a system

$$
\left(Y_{1}, F_{1}\right),\left(Y_{2}, F_{2}\right), \ldots,\left(Y_{m}, F_{m}\right)
$$

of Rokhlin towers. The $F_{j} \subset \mathbb{Z}^{d}$ are all (Σ, ε)-Følner if and only if every set in every partition $\mathcal{P}(x)$ is a (Σ, ε)-Følner set.

Appendix 5: $C^{*}(\mathbb{Z}, X, h)_{Y}$ is large

Set $A=C^{*}(\mathbb{Z}, X, h)$ and

$$
A_{Y}=C^{*}(\mathbb{Z}, X, h)_{Y}=C^{*}\left(C(X), u C_{0}(X \backslash Y)\right) \subset A .
$$

If $Y=\left\{x_{0}\right\}$, we want to show that A_{Y} is large in A.
We sketch the proof of the condition involving cutdowns. To simplify notation, consider just one element $a \in A$. We want $g \in B$ and c close to a such that $(1-g) c, c(1-g) \in A_{Y}$, and such that g is Cuntz subequivalent to some given nonzero positive $z \in A_{Y}$.
Take c of the form $c=\sum_{n=-N}^{N} f_{n} u^{n}$. Let U be a small enough neighborhood of x_{0} that any function supported in $\bigcup_{n=-N}^{N} h^{n}(U)$ is Cuntz subequivalent to z. (This needs some work.) We also want the sets $h^{n}(U)$ to be disjoint.
Now take g_{0} supported in U with $g_{0}\left(x_{0}\right)=1$ and $g=\sum_{n=-N}^{N} g_{0} \circ h^{n}$.
One has to check that $(1-g) c, c(1-g) \in A_{Y}$. It is at least easy to see that when one writes $(1-g) c$ or $c(1-g)$ as $\sum_{n=-N}^{N} k_{n} u^{n}$, then $k_{1}\left(x_{0}\right)=0$.

Appendix 6: Choosing partition valued functions for

 actions of \mathbb{Z}^{d} : the topological small boundary propertyIn general, we choose Y so that, in addition, ∂Y is topologically small. That is, there is $m \in \mathbb{Z}_{\geq 0}$ such that whenever $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m}$ are $m+1$ distinct elements of \mathbb{Z}^{d}, then

$$
h^{\gamma_{0}}(\partial Y) \cap h^{\gamma_{1}}(\partial Y) \cap \cdots \cap h^{\gamma_{m}}(\partial Y)=\varnothing
$$

Let r_{0} be the maximum diameter of any set in any $\mathcal{P}(x)$. For r large enough compared to r_{0} (the choice $6 r_{0}+7$ will do), use point set topology to choose an open set U containing ∂Y which is so small that whenever $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m}$ are $m+1$ distinct elements of \mathbb{Z}^{d}, all with $\left\|\gamma_{j}\right\|_{2}<m r+1$ (this is the new part), then

$$
h^{\gamma_{0}}(U) \cap h^{\gamma_{1}}(U) \cap \cdots \cap h^{\gamma_{m}}(U)=\varnothing .
$$

Partition the elements $\gamma \in S_{U}(x)$ (that is, $\gamma \in \mathbb{Z}^{d}$ such that $h^{\gamma}(x) \in U$) into "r-clusters" C, that is, maximal sets such that any two points in C can be connected by a chain of elements of $S_{U}(x)$ such that each element is at distance less than r from the next one.

Equivalently, the clusters are minimal sets such that the distance from one to any other is at least r.

The point of the choice of U above is that it ensures that no r-cluster has more than m elements. (Details omitted.) In particular, r-clusters are finite.

For each r-cluster C, we now group together in a set in $\mathcal{Q}(x)$ all the sets in $\mathcal{P}(x)$ at distance less than $2 r_{0}+1$ from \mathbb{C}. All leftover sets in $\mathcal{P}(x)$ become sets in $\mathcal{Q}(x)$ without being changed. One can now prove that \mathcal{Q} is semicontinuous.

When \mathcal{P} is (Σ, ε)-Følner, so is \mathcal{Q}.
There is still trouble with iteration: at the next step, we will need to know that ∂U was also topologically small.

