Strict comparison for crossed products by free minimal actions of \mathbb{Z}^d : Supplementary slides

N. Christopher Phillips

University of Oregon and Research Institute for Mathematical Sciences, Kyoto

9 September 2011

Conference on C*-Algebras and Related Topics

Research Institute for Mathematical Sciences, Kyoto University

Kyoto, Japan

5-9 September 2011

Appendix 1: Recursive subhomogeneous C*-algebras

Definition

A recursive subhomogeneous C^* -algebra is a C^* -algebra isomorphic to one of the form

$$B = \left[\cdots \left[\left[C_0 \oplus_{C_1^{(0)}} C_1 \right] \oplus_{C_2^{(0)}} C_2 \right] \cdots \right] \oplus_{C_l^{(0)}} C_l,$$

with $C_k = C(X_k, M_{n(k)})$ for compact Hausdorff spaces X_k and positive integers n(k), with $C_k^{(0)} = C(X_k^{(0)}, M_{n(k)})$ for compact subsets $X_k^{(0)} \subset X_k$ (possibly empty), and where the maps $C_k \to C_k^{(0)}$ are always the restriction maps and the other maps determining the pullbacks are unital. An expression like this is a *recursive subhomogeneous decomposition* of *B*. The *topological dimension* of the decomposition is max (dim(X_0), dim(X_1), ..., dim(X_l)). Appendix 2: Sketch of proof that if B is large in A and B has strict comparison, then so does A.

Theorem

Let A be an infinite dimensional stably finite simple separable unital exact C*-algebra. Let $B \subset A$ be large. Then rc(A) = rc(B).

We will sketch the proof of the case needed for this talk, which is rc(B) = 0 implies rc(A) = 0. That is, if B has strict comparison of positive elements, then so does A.

This condition says that B is "large" in A:

For every ε > 0 and nonzero y in B₊, whenever a₁, a₂,..., a_n ∈ A satisfy 0 ≤ a_j ≤ 1 for j = 1, 2, ..., n, then there are a continuous function g: X → [0, 1] and b₁, b₂, ..., b_n ∈ A such that:

•
$$0 \le b_j \le 1$$
 for $j = 1, 2, ..., n$.
• $||b_j - a_j|| < \varepsilon$ for $j = 1, 2, ..., n$.
• $(1 - g)b_j \in B$ for $j = 1, 2, ..., n$.
• $g \preceq y$.

Recall that for $\tau \in T(A)$, we define $d_{\tau}(a) = \lim_{n \to \infty} \tau(a^{1/n})$ for $a \in M_{\infty}(A)_+$.

Strict comparison of positive elements means that $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in T(A)$ implies $a \preceq b$.

We want to show strict comparison for B implies strict comparison for A.

The point is that one can push elements into B by cutting out a piece with small trace, as sketched next.

N. C. Phillips (U. Oregon and RIMS, Kyoto)

Free minimal actions of Z^a

For a C*-algebra B and $a, b \in B_+$, recall that $a \preceq b$ if there is a sequence $(v_n)_{n \in \mathbb{Z}_{>0}}$ in B such that $\lim_{n \to \infty} v_n b v_n^* = a$.

We describe one technical point. For $\varepsilon > 0$, define $f_{\varepsilon} : [0, \infty) \to [0, \infty)$ by $f_{\varepsilon}(t) = \max(0, t - \varepsilon) = (t - \varepsilon)_+$. For a positive element *a* of a C*-algebra, define $(a - \varepsilon)_+ = f_{\varepsilon}(a)$.

Lemma

Let B be a C*-algebra, and let $a, b \in B_+$. Then $a \preceq b$ if and only if $(a - \varepsilon)_+ \preceq b$ for all $\varepsilon > 0$.

This is needed to take care of the approximation in the "largeness" condition on $B \subset A$.

Suppose for simplicity that A has a unique tracial state τ . Then B also has a unique tracial state, namely $\tau|_B$.

Let $a_1, a_2 \in A$ be positive elements such that $d_\tau(a_1) < d_\tau(a_2)$. We want to prove that $a_1 \preceq a_2$.

It is enough to show that $(a_1 - \varepsilon)_+ \precsim a_2$ for all $\varepsilon > 0$.

Let $\varepsilon > 0$. Choose $\alpha > 0$ appropriately and nonzero $y \in B_+$ with $d_{\tau}(y) < \alpha$. Choose $b_1, b_2 \in A$ and $g \in C(X)$ with $0 \le g \le 1$ such that:

 α .

a
$$0 \le b_1, b_2 \le 1.$$

a $\|b_1 - a_1\| < \alpha$ and $\|b_2 - a_2\| <$
a $(1 - g)b_1, (1 - g)b_1 \in B.$
a $g \preceq y.$

Set

$$c_1 = [(1-g)b_1(1-g) - \alpha]_+$$
 and $c_2 = [(1-g)b_2(1-g) - \alpha]_+.$

These are in B.

Appendix 2: Strict comparison (continued) We had $d_{\tau}(a_1) < d_{\tau}(a_2)$, and we arranged that

• $0 \le b_1, b_2 \le 1.$ • $\|b_1 - a_1\| < \alpha \text{ and } \|b_2 - a_2\| < \alpha.$ • $(1 - g)b_1, (1 - g)b_1 \in B.$ • $g \preceq \gamma.$

We defined

 $c_1 = [(1-g)b_1(1-g) - \alpha]_+ \in B$ and $c_2 = [(1-g)b_2(1-g) - \alpha]_+ \in B$. With a bit of work (and good choice of α), we will get:

 $(a_1 - \varepsilon)_+ \precsim c_1 \oplus g, \quad c_2 \precsim a_2, \quad \text{and} \quad d_{\tau}(c_1) + \alpha < d_{\tau}(c_2).$

The condition on g implies $d_{\tau}(g) \leq d_{\tau}(y) < \alpha$, so strict comparison for B gives

$$c_1 \oplus g \precsim c_2,$$

whence $(a_1 - \varepsilon)_+ \precsim a_2$.

If B has finitely many extreme tracial states, essentially the same method works.

If B has infinitely many extreme tracial states, one has to work a bit harder, using some more machinery, but one gets the same result.

Appendix 3: Rokhlin towers and partition valued functions

To get a partition valued function from a system of Rokhlin towers, let $x \in X$. Every time the orbit of x runs through one of the Rokhlin towers, collect the corresponding values of γ in a set in $\mathcal{P}(x)$. More precisely, the sets in $\mathcal{P}(x)$ are in one to one correspondence with elements $\eta \in \mathbb{Z}^d$ such that $h^{\eta}(x) \in Y_j$ for some j, and the set in $\mathcal{P}(x)$ corresponding to such an element η is $\eta + F_j$.

It is easily seen that $\ensuremath{\mathcal{P}}$ is bounded and invariant.

To get a system of Rokhlin towers from a bounded invariant partition valued function \mathcal{P} , choose finite sets $F_1, F_2, \ldots, F_m \subset \mathbb{Z}^d$ such that every set in every $\mathcal{P}(x)$ is a translate of exactly one of the sets F_j . Define

$$Y_j = \{x \in X \colon F_j \in \mathcal{P}(x)\}.$$

For j = 1, 2, ..., m and $\gamma \in F_j$, we claim that a point $x \in X$ is in $h^{\gamma}(Y_j)$ if and only if the set in $\mathcal{P}(x)$ which contains $0 \in \mathbb{Z}^d$ is $F_j - \gamma$. This holds because, by invariance of \mathcal{P} , we have $x \in h^{\gamma}(Y_j)$ if and only if $F_j - \gamma \in \mathcal{P}(x)$.

N. C. Phillips (U. Oregon and RIMS, Kyoto)

Appendix 4: The Følner condition

To prove that the subalgebra $A = \overline{\bigcup_{n=0}^{\infty} A_n}$ is "large", we will need the finite subsets $F_i \subset \mathbb{Z}^d$ that occur in the systems of Rokhlin towers

$$(Y_1, F_1), (Y_2, F_2), \ldots, (Y_m, F_m)$$

to be $(\Sigma_n, \varepsilon_n)$ -Følner sets for $\varepsilon_n > 0$ with $\varepsilon_n \to 0$, and for finite sets $\Sigma_n \subset \mathbb{Z}^d$ with $\Sigma_n \nearrow \mathbb{Z}^d$.

Recall that a finite set $F \subset \mathbb{Z}^d$ is a (Σ, ε) -Følner set if

$$\operatorname{card}(F \bigtriangleup (\gamma + F)) \le \varepsilon \cdot \operatorname{card}(F)$$

for all $\gamma \in \Sigma$.

Let $\ensuremath{\mathcal{P}}$ be the partition valued function corresponding to a system

$$(Y_1, F_1), (Y_2, F_2), \ldots, (Y_m, F_m)$$

of Rokhlin towers. The $F_j \subset \mathbb{Z}^d$ are all (Σ, ε) -Følner if and only if every set in every partition $\mathcal{P}(x)$ is a (Σ, ε) -Følner set.

Appendix 5: $C^*(\mathbb{Z}, X, h)_Y$ is large Set $A = C^*(\mathbb{Z}, X, h)$ and

$$A_Y = C^*(\mathbb{Z}, X, h)_Y = C^*(C(X), uC_0(X \setminus Y)) \subset A.$$

If $Y = \{x_0\}$, we want to show that A_Y is large in A.

We sketch the proof of the condition involving cutdowns. To simplify notation, consider just one element $a \in A$. We want $g \in B$ and c close to a such that (1 - g)c, $c(1 - g) \in A_Y$, and such that g is Cuntz subequivalent to some given nonzero positive $z \in A_Y$.

Take c of the form $c = \sum_{n=-N}^{N} f_n u^n$. Let U be a small enough neighborhood of x_0 that any function supported in $\bigcup_{n=-N}^{N} h^n(U)$ is Cuntz subequivalent to z. (This needs some work.) We also want the sets $h^n(U)$ to be disjoint.

Now take g_0 supported in U with $g_0(x_0) = 1$ and $g = \sum_{n=-N}^{N} g_0 \circ h^n$.

One has to check that (1-g)c, $c(1-g) \in A_Y$. It is at least easy to see that when one writes (1-g)c or c(1-g) as $\sum_{n=-N}^{N} k_n u^n$, then $k_1(x_0) = 0$.

Appendix 6: Choosing partition valued functions for actions of \mathbb{Z}^d : the topological small boundary property

In general, we choose Y so that, in addition, ∂Y is topologically small. That is, there is $m \in \mathbb{Z}_{\geq 0}$ such that whenever $\gamma_0, \gamma_1, \ldots, \gamma_m$ are m+1 distinct elements of \mathbb{Z}^d , then

$$h^{\gamma_0}(\partial Y) \cap h^{\gamma_1}(\partial Y) \cap \dots \cap h^{\gamma_m}(\partial Y) = \varnothing.$$

Let r_0 be the maximum diameter of any set in any $\mathcal{P}(x)$. For r large enough compared to r_0 (the choice $6r_0 + 7$ will do), use point set topology to choose an open set U containing ∂Y which is so small that whenever $\gamma_0, \gamma_1, \ldots, \gamma_m$ are m + 1 distinct elements of \mathbb{Z}^d , all with $\|\gamma_j\|_2 < mr + 1$ (this is the new part), then

$$h^{\gamma_0}(U)\cap h^{\gamma_1}(U)\cap\dots\cap h^{\gamma_m}(U)=arnothing.$$

Partition the elements $\gamma \in S_U(x)$ (that is, $\gamma \in \mathbb{Z}^d$ such that $h^{\gamma}(x) \in U$) into "*r*-clusters" *C*, that is, maximal sets such that any two points in *C* can be connected by a chain of elements of $S_U(x)$ such that each element is at distance less than *r* from the next one.

Equivalently, the clusters are minimal sets such that the distance from one to any other is at least r.

The point of the choice of U above is that it ensures that no r-cluster has more than m elements. (Details omitted.) In particular, r-clusters are finite.

For each *r*-cluster *C*, we now group together in a set in Q(x) all the sets in $\mathcal{P}(x)$ at distance less than $2r_0 + 1$ from \mathbb{C} . All leftover sets in $\mathcal{P}(x)$ become sets in Q(x) without being changed. One can now prove that Q is semicontinuous.

When \mathcal{P} is (Σ, ε) -Følner, so is \mathcal{Q} .

There is still trouble with iteration: at the next step, we will need to know that ∂U was also topologically small.