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Our setup

Throughout, h : Zd × X → X will be a free minimal action of Zd on a
finite dimensional compact metric space X .

We write
hγ(x) for h(γ, x).

If we are actually given a homeomorphism h : X → X , this is the usual
notation for the corresponding action of Z. Here, however, remember that
γ ∈ Zd .

Free means that for γ ∈ Zd \ {0}, we have hγ(x) 6= x for all x ∈ X . That
is, hγ has no fixed points.

Minimal means that the only closed Zd -invariant subsets of X are X
and ∅. Equivalently, all orbits are dense. (This is the topological version of
ergodicity.)
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Results

Theorem

Let h be a free minimal action of Zd on a finite dimensional compact
metric space X . If the action has the topological small boundary property
(defined below), then C ∗(Zd ,X , h) has strict comparison of positive
elements (defined below).

The topological small boundary property condition is probably redundant.

Strict comparison of positive elements means that the order on the Cuntz
semigroup is determined by tracial states. See below.

It is probably also true (work in progress with Dawn Archey) that, under
the same hypotheses, C ∗(Zd ,X , h) has stable rank one.
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Strict comparison of positive elements

Let A be a C*-algebra, and let a, b ∈ A+. We write a - b if there is a
sequence (vn)n∈Z>0 such that limn→∞ vnbv∗n = a.

(This is the order which goes into the definition of the Cuntz semigroup.)

Let T (A) be the set of tracial states on A. For τ ∈ T (A), the
corresponding dimension function dτ is defined by dτ (a) = limn→∞ τ(a1/n)
for a ∈ (K ⊗ A)+. (It is the “measure” of the support projection of a.)

Assume that A is simple. Strict comparison of positive elements means
that if a, b ∈ (K ⊗ A)+ and dτ (a) < dτ (b) for all τ ∈ T (A), then a - b.

It is the analog for positive elements of having the order on projections
over A be determined by traces, that is, if projections p, q ∈ M∞(A)
satisfy τ(p) < τ(q) for all τ ∈ T (A), then p - q in the sense of
Murray-von Neumann.

There is a more general concept, the radius of comparison rc(A). Strict
comparison of positive elements is equivalent to rc(A) = 0.
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The topological small boundary property

Definition

A closed subset E ⊂ X is said to be topologically Zd -small (here, just
topologically small) if there is some m ∈ Z≥0 such that whenever
γ0, γ1, . . . , γm are m + 1 distinct elements of Zd , then

hγ0(E ) ∩ hγ1(E ) ∩ · · · ∩ hγm(E ) = ∅.

We refer to m as the topological smallness constant.

Definition

The action h : Zd × X → X has the topological small boundary property if
whenever K , L ⊂ X are disjoint compact sets, then there exist open sets
U,V ⊂ X such that K ⊂ U, L ⊂ V , U ∩ V = ∅, and ∂U is topologically
Zd -small.
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The topological small boundary property (continued)

Definition

The action h : Zd × X → X has the topological small boundary property if
whenever K , L ⊂ X are disjoint compact sets, then there exist open sets
U,V ⊂ X such that K ⊂ U, L ⊂ V , U ∩ V = ∅, and ∂U is topologically
Zd -small.

If X is a manifold and the action is free and smooth, it has the topological
small boundary property with constant dim(X ). One arranges that ∂U is a
submanifold of codimension one and that the intersections

hγ0(∂U) ∩ hγ1(∂U) ∩ · · · ∩ hγm(∂U),

for arbitrary m ∈ Z>0 and distinct γ0, γ1, . . . , γm ∈ Zd , are transverse.

It is very likely that the topological small boundary property is automatic
whenever X has finite covering dimension. (The methods have been
developed by Kulesza in 1995.) If dim(X ) = ∞, then the topological small
boundary property presumably can’t hold.
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The topological small boundary property (continued)

Definition

A closed subset E ⊂ X is said to be topologically small if there is some
m ∈ Z≥0 such that whenever γ0, γ1, . . . , γm are m + 1 distinct elements
of Zd , then

hγ0(E ) ∩ hγ1(E ) ∩ · · · ∩ hγm(E ) = ∅.

If K ⊂ X is a topologically small compact set, then µ(K ) = 0 for every
Zd -invariant Borel probability measure µ on X . The converse is false.

So the topological small boundary property is a stronger condition than
the small boundary property associated with mean dimension zero.
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Results (continued)

Theorem

Let h be a free minimal action of Zd on a finite dimensional compact
metric space X . If the action has the topological small boundary property,
then C ∗(Zd ,X , h) has strict comparison of positive elements.

Strict comparison of positive elements means that dτ (a) < dτ (b) for all
τ ∈ T (A) implies a - b.

Corollary

Let h be a free minimal action of Zd on a finite dimensional compact
metric space X . If the action has the topological small boundary property,
then the order on projections over C ∗(Zd ,X , h) is determined by traces.

That is, if projections p, q ∈ M∞(A) satisfy τ(p) < τ(q) for all τ ∈ T (A),
then p - q.

The corollary is already known when X is the Cantor set. (The topological
small boundary property is then automatic.)
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Approximate outline of the rest of the talk

“Large” subalgebras

The machinery used to construct “large” subalgebras in crossed
products: Rokhlin towers and partition valued functions.

How “large” subalgebras are constructed for actions of Z and actions
on the Cantor set.

Why these constructions do not work when d > 1 and X is not
totally disconnected.

A sketch of some of what needs to be done to modify the construction
to work in the presence of the topological small boundary property.

N. C. Phillips (U. Oregon and RIMS, Kyoto) Free minimal actions of Zd 9 September 2011 10 / 44

“Large” subalgebras: background

For context, suppose h : X → X is a minimal homeomorphism. The
following “large” subalgebra of C ∗(Z,X , h) has played a key role in the
structure theory for this crossed product. Let u ∈ C ∗(Z,X , h) be the
unitary corresponding to the generator of Z. For Y ⊂ X closed, set

C ∗(Z,X , h)Y = C ∗
(
C (X ), uC0(X \ Y )

)
⊂ C ∗(Z,X , h).

Then take Y to be a one point set.

This subalgebra is the direct limit of much more tractable subalgebras
obtained by taking int(Y ) 6= ∅. It is not dense, but it is large enough that
analyzing it gives a lot of information about C ∗(Z,X , h). In particular, it is
a tool for converting Rokhlin towers (see below) into something that can
be used algebraically. It was originally introduced by Putnam.

Our approach is to generalize the method used for actions of Zd on the
Cantor set. This method uses an analog of C ∗(Z,X , h)Y , but even for
actions of Zd on the Cantor set, no useful easy formula is known.
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Definition of a “large” subalgebra

Definition

Let A be an infinite dimensional stably finite simple separable unital exact
C*-algebra. A subalgebra B ⊂ A is said to be large in A if:

1 B contains the identity of A.

2 B is simple.

3 The restriction map T (A) → T (B) is surjective.

4 For every m ∈ Z>0, a1, a2, . . . , am ∈ A, ε > 0, and y ∈ B+ \ {0},
there are c1, c2, . . . , cm ∈ A and g ∈ B such that:

1 0 ≤ g ≤ 1.

2 For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.

3 For j = 1, 2, . . . ,m we have (1− g)cj , cj(1− g) ∈ B.

4 g - y relative to the subalgebra B. (Cuntz subequivalence in B.)

Nothing is said about g being a projection or about g approximately
commuting with anything.
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Let A be as above, and let B ⊂ A. Then B is large in A if B has the same
unit, the same ideals (that is, none), and the same traces, and, in addition:

For every m ∈ Z>0, a1, a2, . . . , am ∈ A, ε > 0, and y ∈ B+ \ {0}, there are
c1, c2, . . . , cm ∈ A and g ∈ B such that:

1 0 ≤ g ≤ 1.

2 For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.

3 For j = 1, 2, . . . ,m we have (1− g)cj , cj(1− g) ∈ B.

4 g - y relative to the subalgebra B.

Theorem

Let A be an infinite dimensional stably finite simple separable unital exact
C*-algebra. Let B ⊂ A be large. Then rc(A) = rc(B).

In particular, if B has strict comparison of positive elements, then so
does A.

We can probably also prove that if B is large in A and B has stable rank
one, then so does A. (Joint with Dawn Archey.)
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Existence of large subalgebras for actions of Z

Recall that if h : X → X is a (minimal) homeomorphism and Y ⊂ X is
closed, then

C ∗(Z,X , h)Y = C ∗
(
C (X ), uC0(X \ Y )

)
⊂ C ∗(Z,X , h).

Theorem

Let X be a compact metric space, and let h : X → X be a
homeomorphism. Let Y ⊂ X be finite and intersect each orbit at most
once. Then C ∗(Z,X , h)Y is large in C ∗(Z,X , h).

In particular, Y could be a one point set.
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Application of large subalgebras to actions of Z
Theorem

Let X be a compact metric space, and let h : X → X be a
homeomorphism. Let x0 ∈ X . Then C ∗(Z,X , h){x0} is large in C ∗(Z,X , h).

Recall that

C ∗(Z,X , h)Y = C ∗
(
C (X ), uC0(X \ Y )

)
⊂ C ∗(Z,X , h).

If we take sets Yn with Y1 ⊃ Y2 ⊃ · · · , int(Yn) 6= ∅ for all n, and⋂∞
n=1 Yn = {x0}, then

C ∗(Z,X , h){x0} =
⋃∞

n=1
C ∗(Z,X , h)Yn .

If dim(X ) < ∞, we have exhibited C ∗(Z,X , h){x0} as a direct limit, with
no dimension growth, of “recursive subhomogeneous C*-algebras”. By a
result of Toms, C ∗(Z,X , h){x0} has strict comparison of positive elements.
Since C ∗(Z,X , h){x0} is large in C ∗(Z,X , h), a theorem stated above
implies that C ∗(Z,X , h) has strict comparison of positive elements.
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Existence of large subalgebras for actions of Zd

The theorem on the next slide is what we actually prove to get large
subalgebras for free minimal actions of Zd with the topological small
boundary property.

Parts of the first conditions differ from their counterparts in the definition.

The condition on approximation of cutdowns has a different requirement
for smallness of the element g .

The last condition has nothing to do with being large; its purpose is to
ensure that the subalgebra has strict comparison of positive elements.
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Theorem

Suppose h : Zd × X → X is free, minimal, and has the topological small
boundary property. There is a unital B ⊂ C ∗(Zd ,X , h) such that:

1 C (X ) ⊂ B.

2 B is simple.

3 The restriction map T (C ∗(Zd ,X , h)) → T (B) is bijective.

4 For every m ∈ Z>0, a1, a2, . . . , am ∈ C ∗(Zd ,X , h), and ε > 0, there
are c1, c2, . . . , cm ∈ C ∗(Zd ,X , h) and g ∈ C (X ) such that:

1 0 ≤ g ≤ 1.

2 For j = 1, 2, . . . ,m we have ‖cj − aj‖ < ε.

3 For j = 1, 2, . . . ,m we have (1− g)cj , cj(1− g) ∈ B.

4 supp(g) has a neighborhood U such that µ(U) < ε for all invariant
probability measures µ.

5 B is a direct limit, with injective maps and no dimension growth, of
recursive subhomogeneous algebras.
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Constructing the subalgebra
In the rest of this talk, we give some ideas of the construction of the
recursive subhomogeneous algebras Bn ⊂ C ∗(Zd ,X , h) whose direct limit
is the “large” subalgebra B.

The algebras Bn come from Rokhlin towers. There are three equivalent
ways of describing the objects we need:

Systems of Rokhlin towers in X .
Bounded invariant partition valued functions from X to Zd (following
Forrest).
Bounded open subgroupoids of the transformation group groupoid
Zd × X .

All of these are needed: partition valued functions for the construction, the
subgroupoid picture to make the subalgebras Bn ⊂ C ∗(Zd ,X , h), and the
Rokhlin tower picture to prove that the closure of the union of the Bn is
“large”.

In this talk, I will skip the subgroupoid picture. I will keep the Rokhlin
towers, because they are more intuitive than partition valued functions.
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Systems of Rokhlin towers

At first, we will omit two important properties: (semi-)continuity and the
Følner condition.

Definition

A system of Rokhlin towers for h : Zd × X → X is a finite collection of
pairs

(Y1,F1), (Y2,F2), . . . , (Ym,Fm)

consisting of subsets Yj ⊂ X and finite subsets Fj ⊂ Zd such that

X =
m∐

j=1

∐
n∈Fj

hn(Yj).

We really do want the sets hn(Yj) to be exactly disjoint—no overlaps of
any kind. This differs from what has been done elsewhere.
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Rokhlin towers for Z

X =
m∐

j=1

∐
n∈Fj

hn(Yj), with Fj = {0, 1, 2, . . . , r(j)− 1}.

Y1 Y2 Yn

There are r(1) levels in the first tower: Y1, h(Y1), . . . , h
r(1)−1(Y1).

The picture for actions of Zd is nowhere near as neat, but the basic idea
(levels indexed by finite subsets of the group) is the same.
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Partition valued functions

These are adapted from work of Forrest.

Definition

A partition valued function from X to Zd is a function P from X to the
set of partitions of Zd .

The partition valued function P is bounded if there is a finite upper
bound on the diameters of all the sets in all the P(x).

The partition valued function P is invariant if for every x ∈ X and
γ ∈ Zd , we have P(hγ(x)) = P(x)− γ. That is, the sets in P(hγ(x))
are exactly the sets T − γ for T ∈ P(x).

The second condition says that if we move forward on X , by applying hγ ,
then we translate the partition back by γ.
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Rokhlin towers for Z, with part of an orbit

x hn2(x) hn3(x) hn1(x)

In the previous notation for the heights of the towers,

n1 = r(1), n2 = r(1) + r(n), and n3 = r(1) + r(n) + r(1).

Each “traverse” of a tower gives one set in the partition associated to x .
So P(x) contains the sets

{0, 1, . . . , n1−1}, {n1, n1+1, . . . , n2−1}, and {n2, n2+1, . . . , n3−1}.

The partition for h(x) is shifted back one. (This is invariance of P.)
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Comparing Rokhlin towers and partition valued functions

Roughly speaking (and with details omitted):

To get a bounded invariant partition valued function from a system of
Rokhlin towers: Let x ∈ X . Each set in the partition P(x) of Zd

corresponds to a “traverse” by the orbit of x of a single tower.

To get a system of Rokhlin towers from a bounded invariant partition
valued function P: We have to single out one set to be the “base” of each
of the Rokhlin towers we are supposed to have. Consider all the sets which
appear in any P(x). If a set appears, so do all its translates. Choose one
representative from each translation class, getting, say,
F1,F2, . . . ,Fm ⊂ Zd . Define

Yj = {x ∈ X : Fj ∈ P(x)}.
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Semicontinuous partition valued functions

The subalgebra Bn ⊂ C ∗(Zd ,X , h) will be the C*-algebra of the
subgroupoid Gn of Zd × X associated with the nth system of Rokhlin
towers. In order to get a subalgebra of C ∗(Zd ,X , h), the subset
Gn ⊂ Zd × X must be open.

For partition valued functions, the corresponding condition turns out to be
semicontinuity. This means that, given x0, the partitions associated with
points x sufficiently close to x0 are coarser (as seen by a very large finite
set F ⊂ Zd).

Definition

Let P be a partition valued function from X to Zd . Then P is
semicontinuous at x0 ∈ X if for every finite set F ⊂ Zd there is an open
subset U ⊂ X containing x0 such that for every x ∈ U, the partition
P(x0) ∩ F , consisting of the nonempty sets of the form T ∩ F for
T ∈ P(x0), refines the partition P(x) ∩ F .
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Semicontinuous partition valued functions (continued)

Definition

Let P be a partition valued function from X to Zd . Then P is
semicontinuous at x0 ∈ X if for every finite set F ⊂ Zd there is an open
subset U ⊂ X containing x0 such that for every x ∈ U, the partition
P(x0) ∩ F , consisting of the nonempty sets of the form T ∩ F for
T ∈ P(x0), refines the partition P(x) ∩ F .

The partition valued function P is continuous at x0 if we can get
P(x0) ∩ F = P(x) ∩ F for every x ∈ U. This condition corresponds to the
subgroupoid being both open and closed in Zd × X .

Semicontinuity corresponds to taking the sets in the Rokhlin towers to be
closed. Continuity corresponds to taking them to be both open and closed.

We can arrange continuity if X is the Cantor set, but not in general.

One of the main new points of the proof of the main theorem is arranging
for, and using, semicontinuity.
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The Følner condition

To prove that the subalgebra B =
⋃∞

n=0 Bn is “large”, we will need the
finite subsets Fj ⊂ Zd that occur in the systems of Rokhlin towers

(Y1,F1), (Y2,F2), . . . , (Ym,Fm)

to be increasingly good Følner subsets of Zd .

Equivalently, the sets in the partitions Pn(x) are increasingly good Følner
subsets of Zd , uniformly in x as n →∞.
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Refinement

To get B1 ⊂ B2:

If P1 and P2 are the corresponding partition valued functions from X
to Zd , then we require that P1(x) refines P2(x) for all x ∈ X . That is, P2

is coarser than P1.

The towers associated to P2 will be taller than those associated to P1.
The condition means that when a point x traverses one of the Rokhlin
towers associated with P2, it must traverse only whole towers (not
fractions of them) associated with P1.
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What happens for actions of Z
Notation

For any set Y ⊂ X and any x ∈ X , we denote by SY (x) the set

SY (x) = {γ ∈ Zd : hγ(x) ∈ Y }.

Suppose d = 1, so we are considering an action of Z. Let Y ⊂ X be a
closed subset such that int(Y ) 6= ∅. For x ∈ X , we can write the set
SY (x) of n ∈ Z such that hn(x) ∈ Y as

SY (x) = {. . . , n−2(x), n−1(x), n0(x), n1(x), n2(x), . . .},
with

· · · < n−2(x) < n−1(x) < 0 ≤ n0(x) < n1(x) < n2(x) < · · · .

For x ∈ X , define

P(x) =
{
[nl−1(x), nl(x)) ∩ Z : l ∈ Z}.
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Picture of P

The solid lines are all part of Y . The homeomorphism h moves points one
space to the right. For semicontinuity: The endpoint of the segment which
ends in the middle is contained in Y . (This is true because Y is closed.)
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Actions of Z (continued)

One gets semicontinuity by choosing Y to be closed.

One gets the Følner condition by choosing Y to have small diameter, so
that the intervals appearing in the partitions P(x) are long.

To get B =
⋃∞

n=0 Bn to be “large”, one also needs ∂Y to have a
universally ε-small neighborhood, that is, a neighborhood U such that
µ(U) < ε for every invariant Borel probability measure µ on X .

If Y is also open, then P is continuous.

Let u ∈ C ∗(Z,X , h) be the standard unitary generator of Z in the crossed
product. The C*-algebra of the corresponding groupoid turns out to the
the C*-algebra

C ∗(Z,X , h)h−1(Y ) = C ∗
(
C (X ), uC0(X \ h−1(Y )

)
⊂ C ∗(Z,X , h),

as described near the beginning of the talk.
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Choosing partition valued functions for actions of Zd on
the Cantor set
If we try an analogous method to construct P(x) for an action of Z2, we
need an order on Z2. If we use the order

(γ1, γ2) ≤ (η1, η2) if γ1 ≤ η1 and γ2 ≤ η2,

we get subsets of Z2 which may have long arms extending right and up,
and which are not even obviously finite.

Recall
SY (x) = {γ ∈ Zd : hγ(x) ∈ Y }.

For free minimal actions of Zd on the Cantor set, Forrest obtains a
partition valued function as follows. One takes the set T ⊂ Zd

corresponding to γ ∈ SY (x) to be the set of all ζ ∈ Zd which are closer to
γ than to any other element of SY (x), using the usual distance from ‖ · ‖2

on Zd .

Ties must be broken in an invariant way.
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Forrest’s partition (points of Zd not shown)
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Choosing partition valued functions for actions of Zd on
the Cantor set (continued)
If int(Y ) 6= ∅ and Y has sufficiently small diameter, then P will be
bounded and consist of Følner sets. If Y is both closed and open, then P
will be continuous.

It becomes somewhat awkward to choose a second partition valued
function Q in such a way that P refines it. To do so, one must group
together not just individual points in Zd , as done above, but rather sets in
P(x).

Unfortunately, if Y is not open, P will not even be semicontinuous.

In the construction for Z, when the point x moves in such a way that
hγ(x) crosses out of Y , the result is to combine two sets in the old P(x)
to make one set in the new P(x).

With Forrest’s construction, when the set in P(x) corresponding to γ
disappears, its points get distributed among all its neighbors.
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What we did before for Z

The solid lines are all part of Y . The homeomorphism h moves points one
space to the right. For semicontinuity: The endpoint of the segment which
ends in the middle is contained in Y . (This is true because Y is closed.)
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What Forrest’s construction does for Z

You can see the failure of semicontinuity in the middle of the picture: the
third partition from the bottom is supposed to be coarser than the one
above it.
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How to fix Forrest’s construction for actions of Z

The long intervals in the middle of the picture occur for an open set of
values of x .
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Choosing partition valued functions for actions of Zd :
preliminary version
Recall

SY (x) = {γ ∈ Zd : hγ(x) ∈ Y }.

Forrest took the set T ⊂ Zd in the partition P(x) corresponding to
γ ∈ SY (x) to be the set of all ζ ∈ Zd which are closer to γ than to any
other element of SY (x).

We can’t make it semicontinuous by choosing Y to be closed (or by
choosing Y to be open).

Nevertheless, choose Y ⊂ X to be closed, to have int(Y ) 6= ∅, and to
have small diameter, and let P be the partition valued function obtained
via Forrest’s method. Choose a small open set U containing ∂Y . (We will
say something later about how small.)

We construct a new partition valued function Q which is coarser than P.
At γ ∈ Zd for which hγ(x) ∈ U, we form a single set in Q(x) by combining
all sets in P(x) which are within a distance M (chosen later) of γ.
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Choosing partition valued functions for actions of Zd :
preliminary version (continued)

To get Q, at γ ∈ Zd for which hγ(x) ∈ U, we formed a single set in Q(x)
by combining all sets in P(x) which are within a distance M (chosen later)
of γ.

As hγ(x) crosses ∂U from U into Y , the partition P(x), for x ∈ ∂U,
refines Q(x), because we just break up the sets which were combined to
form the set in Q(x) containing γ. This is semicontinuity. (We need to
ensure hη(x) 6∈ ∂Y unless η is very far from γ.)
The same thing happens as hγ(x) crosses ∂U from U into X \ Y .

One must also arrange for continuity as hγ(x) moves within U. This
requires additional conditions (U is small enough) which will be implicit in
the following, but which I will not make explicit here.
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How to fix Forrest’s construction for actions of Z

In this picture, X is implicitly one dimensional.
We need to be sure one set of long intervals does not interfere with
another.
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How to fix Forrest’s construction for actions of Z

The solid vertical lines are parts of Y . The long intervals in the middle of
the picture occur for a small open set U of values of x .

If dim(X ) = 0, we can take Y closed and open, so U = ∅, and there are
no long intervals at all.

If dim(X ) = 1 (as shown), there would be trouble if one of the other solid
lines ended at the same height as the one in the middle. But the solid
lines not shown are far enough away that it does not matter if they end at
the same height as the one in the middle.
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How to fix Forrest’s construction for actions of Z

The solid vertical lines are parts of Y . The long intervals in the middle of
the picture occur for a small open set U of values of x .

If dim(X ) = 1 (as shown), there would be trouble if one of the other solid
lines ended at the same height as the one in the middle. But the solid
lines not shown are far enough away that it does not matter if they end at
the same height as the one in the middle.

By a small perturbation of Y , we can arrange that the ends of the solid
lines are all at different heights. Think of U as the unions of vertical open
intervals about the end of each solid line. Then U can be chosen small
enough that for nearby solid lines, these intervals do not overlap.
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How to fix Forrest’s construction for actions of Z

The long intervals in the middle of the picture occur for a small open set
U of values of x .

By a small perturbation of Y , we can arrange that the ends of the solid
lines are all at different heights. This corresponds to
hγ0(∂Y ) ∩ hγ1(∂Y ) = ∅ for γ0 6= γ1.

Think of U as the unions of vertical open intervals about the end of each
solid line. Then U can be chosen small enough that for nearby solid lines,
these intervals do not overlap. This corresponds to hγ0(U) ∩ hγ1(U) = ∅
for γ0, γ1 in a suitable finite set and γ0 6= γ1.
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How to fix Forrest’s construction for actions of Z

The long intervals occur for a small open set U of values of x .

By a small perturbation of Y , we can arrange that the ends of the solid
lines are all at different heights. Then U can be chosen suitably. This
corresponds to hγ0(∂Y ) ∩ hγ1(∂Y ) = ∅ for γ0 6= γ1. This is possible when
dim(X ) = 1.

When dim(X ) = 2, the best we can hope for is that

hγ0(∂Y ) ∩ hγ1(∂Y ) ∩ hγ2(∂Y ) = ∅.

for distinct γ0, γ1, γ2. Now M must be larger (putting more sets together)
to accommodate overlaps of even the long intervals shown.
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Choosing partition valued functions for actions of Zd : the
topological small boundary property

In general, we choose Y so that, in addition, ∂Y is topologically small.
That is, there is m ∈ Z≥0 such that whenever γ0, γ1, . . . , γm are m + 1
distinct elements of Zd , then

hγ0(∂Y ) ∩ hγ1(∂Y ) ∩ · · · ∩ hγm(∂Y ) = ∅.
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