Elemental Analyzer (TC / EA)

OPERATING MANUAL

Issue 9/2003

Thermo Finnigan

Ident. No. 112 76 01

Übereinstimmungserklärung gemäß EN 45014 declaration of conformity according to EN 45014 Dichiarazione di conformità alla EN 45014

Finnigan MAT GmbH

Name des Herstellers:

manufacturers name: nome produttore:

Adresse des Herstellers: manufacturers address: indirizzo produttore: Barkhausenstraße 2 28197 Bremen Germany

erklärt, daß das Produkt declares that the following product dichiara che il seguente prodotto⁻

Thermo chemical elemental analyzer TC/EA

mit den folgenden Produktspezifikationen übereinstimmt: complies with the following product specifications: rispetta le seguenti specifiche del prodotto:

EMV (Störemissionen):

EMC (emissions): EMC (emissioni):

EN 50081-1, EN 55022

EMV (Störfestigkeit):

EMC (immunity): EMC (immunità):

EN 50082-2, EN 61000-4-2, -3, -4, -5, -6, EN 50204

Elektrische Sicherheit:

electrical safety: EN 6 sicurezza elettrica:

Ergänzende Informationen: *complementary information:* informazioni complementari:

Dieses Produkt erfüllt die EMV-Richtlinie 89/336/EWG und Niederspannungsrichtlinie 73/23/EWG. *This product complies with the EMC directive 89/336/EEC and the Low Voltage Directive 73/23/EEC.* Questo produtto rispetta la direttiva 89/336/EEC e la direttiva 73/23/EEC.

Bremen, Germany, 16. Dezember 1998

Der Entwicklungsleiter: *Head of Engineering:* Responsabile construzione:

h. Sommelai

EN 61010-1

Thermo Finnigan

Reparatur-Begleitkarte*) Repair-Covering Letter

Absender: Despachter:	Geräte-Type: Instrument Type:		
	Service-Nr.: Service No		
Sie erhalten zur Reparatur unter unserer Bestell- You receive for repair under our order no.:	Nr.:		
Festgestellte Mängel oder deren Auswirkung: Established defect or its effect:			
Bitte detaillierte Angaben machen / Please specify in detail			
Ein Austauschteil haben wir erhalten unter Komm An exchange part already received with commiss	iissions-Nr.: ion no.:		
	Ja/Yes Nein/No		
Die Anlage ist außer Funktion The system is out of function	Ja/Yes 🗌 Nein/No 🗌		
Durch die nachfolgende Unterschrift bestätige(n) ich /wir, daß die o.g. Teile frei von gesundheitsschädlichen Stoffen sind, bzw. vor ihrer Einsendung an Thermo Finnigan MAT dekontaminiert wurden, falls die Teile mit giftigen Stoffen in Verbindung gekommen sind.	By signing this document I am/ we are certifying that the a.m. parts are free from hazardous materials. In case the parts have been used for the analysis of hazardous substances I/we attest that the parts have been decontaminated before sending them to Thermo Finnigan MAT.		

Unterschrift / signature

LOCKING PIN

0-1 **Thermo** Finnigan

ABOUT THIS MANUAL

This Manual starts with an overview about TC/EA. Major aspects of how to set up the system prior to starting any application are described. An explanation of the different applications follows providing detailed information illustrated by numerous examples. For technical information refer to <u>chapter 11</u>.

NOTE: Thermo Finnigan denies liability for errors and omissions within this Manual.

TABLE OF CONTENTS (1/3)

Chapter	Title	Page
1	Precautions	1 – 1
	Installation requirements	1 – 1
	Maintenance Measures for TC/EA	1 – 2
	Transformer	1 – 4
2	Introduction	2 – 1
3	Components of TC/EA	3 – 1
4	Hardware layout	4 – 1
5	Setup	5 – 1
	How to get started with the system	5 – 2
	Reactor filling	5 – 4
	Autosampler installation	5 – 6
	Bottom reactor connection	5 – 7
	Reactor holder and fan	5 – 8
	Main Helium connection	5 – 9
	Reactor cleaning	5 – 10
6	Gas connections and supply	6 – 1
	Gas connections	6 – 1

0-2 **Thermo** Finnigan Issue 11/2001

TABLE OF CONTENTS (2/3)

Chapter	Title	Page
	Gas supply	6 – 2
	Working with gas supplies	6 – 3
7	Temperature Controller	7 – 1
8	Oxygen measurement	8 – 1
	Procedure	8 – 1
	Definition of Gas Configuration for an 18 O measurement	8 – 3
	Create a Gas Configuration for an 18 O measurement	8 – 3
	TC/EA Configuration	8 – 4
	ConFlo II/III software	8 – 5
	Zero enrichment (ST ON/OFF test)	8 – 8
	Solid-autosampler leak test	8 – 12
	How to start an oxygen measurement	8 – 13
	Weight percent determination	8 – 18
	Blank measurement	8 – 20
	Reference measurement	8 – 23
9	Hydrogen measurement	9 – 1
	Procedure	9 – 1
	ConFlo II/III and TC/EA Configuration	9 – 2
	Create a Gas Configuration for a ² H measurement	9 – 3
	H ₃ -Factor determination	9 – 4
	Zero enrichment (ST ON/OFF test)	9 – 7
	How to start a hydrogen measurement	9 – 12
10	Dual Measurement	10 – 1
	Introduction	10 – 1
	Procedure	10 – 2
	How to perform a Jump Calibration	10 – 3
	How to start a dual measurement	10 – 7

0-3 **Thermo** Finnigan Issue 11/2001

TABLE OF CONTENTS (3/3)

Chapter	Title	Page
11	Technical Information	11 – 1
	Introduction	11 – 1
	Side panel (left) open	11 – 2
	Side panel (right) open	11 – 3
	TC/EA manometer	11 – 4
	Gasflow diagram	11 – 5
	TC/EA T-piece and air operated valve	11 – 6
	Rear panel open	11 – 7
	Circuit diagram (manufactured after June 1999)	11 – 8
	Circuit diagram (manufactured after March 1999)	11 – 9
	Circuit diagram (manufactured before March 1999)	11 – 10
	Spare part list	11 – 11
	Troubleshooting	11 – 13
	Transformer	11 – 14
	Furnace	11 – 15

Elemental Analyzer (TC / EA)

PRECAUTIONS

Issue 11/2001

Thermo Finnigan

PRECAUTIONS

1 Power requirements

- Mains connection: plug the cable into a 220V/230V socket only!
- Never touch the plug with wet hands!
- 2 Make sure that the TC/EA is not exposed to direct sunlight.
- 3 Make sure that the cooling system of the TC/EA is not impaired.
- **4** To avoid damage to the internal circuits and to the external surface keep the system away from heat (i.e. radiators, etc.).
- 5 Enough space at the rear panel of the TC/EA is needed for proper ventilation.
- 6 Avoid using aerosol sprays near the system. This can cause sudden ignition of the spray.
- 7 Do not clean the TC/EA with either paint thinner or alcohol or other organic solvents.
- 8 Do not place any objects especially liquids upon the TC/EA.
- **9** Place the system on a flat, solid surface that can carry at least 150 kg.
- **10** Do not put any objects upon the main power supply cable.

INSTALLATION REQUIREMENTS

The TC/EA can be connected to any current Thermo Finnigan MAT IRMS equipped for Continuous Flow application.

POWER: 230 V, single phase, 8A

DIMENSIONS: 45 X 70 X 50 cm (WxDxH)

WEIGHT: 50 kg

The specifications are subject to change without notification.

MAINTENANCE MEASURES FOR TC / EA (1/2)

Due to our knowledge arising from almost 100 TC/EA devices in the field and to feedback from our users during the last three years, we inform about maintenance measures. They may facilitate proper work, may be helpful to keep your device in good order and increase the life time of the TC/EA reactor and the furnace heater.

As the life time of the furnace heater is limited, do not heat it to higher temperatures than necessary!

This implies in detail:

- > to measure:
- oxygen of organic samples at 1325 °C 1350 °C
- oxygen of inorganic samples at 1450 °C
- hydrogen of organic samples at 1400 °C
- hydrogen of inorganic samples at 1450 °C
- **water** (sample amount: 0.5 μl) at 1400 °C
- to cool down the furnace:
 - If you do not want to perform any analysis *for about one day* (e.g. over night), cool down the furnace to 600 °C and set the column to 150 °C.
 Cooling speed of furnace: 300 °C per hour.

1

MAINTENANCE MEASURES FOR TC / EA (2/2)

- If you do not want to perform any analysis *for more than one week*, cool down both furnace and column to ambient temperatures.
 Cooling speed of furnace: 300 °C per hour.
- If the TC/EA has not been in use *for a long time* or if it was *off*, heat the column to 300 °C over night. Heat the furnace to the desired temperature using a speed of 300 °C per hour.
- Always watch the background of the masses 28 and 40. If the values exceed those given in the TC/EA Operating Manual by at least 20 %, perform a leak test. A small leak will crack the ceramic tube and after a while the glassy carbon reactor, too.
- After 70 to 100 measurements cool down the reactor to 500 °C and take the graphite crucible out of the reactor using a special tool, which can be delivered on request. After cleaning insert it again.
- If you want to send back the furnace, fix the heater using a special holder, which was delivered with TC/EA. To handle it properly, read the "Unpacking" page, which precedes Chapter 1 in the TC/EA Manual.
- In case of a new or replaced furnace, set the heating transformer to initial voltage (see "Transformer" page in the TC/EA Manual).

TRANSFORMER

The reactor heating stops at a lower temperature than selected, because the resistor value increases over time. Therefore, a higher voltage setting becomes necessary.

NOTE: A new reactor heater has a resistor of approximately 3.0 Ω . After six months of operation, the resistor is about 8 - 9 Ω .

For a new setting proceed as follows:

- Switch "OFF" main power supply.
- Remove the left side panel.
- Move wire (B) to the next higher value (see fig. S 6).

fig. S 6

WARNING: Switch OFF main power prior to working to prevent an electrical shock!

1-4 **Thermo** Finnigan Issue 11/2001

_

Elemental Analyzer (TC / EA)

INTRODUCTION

Issue 11/2001

Thermo Finnigan

INTRODUCTION (1/2)

High precision analysis of the stable isotopes of oxygen has been crucial for the development of stable isotope geochemistry. While procedures for the analysis of ¹⁸O/¹⁶O of carbonates, water and silicates have been worked out early and have until recently remained largely unchanged, this is not true for the analysis of most forms of organic and inorganic oxygen.

The isotopic analysis of organic oxygen largely bases upon carbon reduction (carbon reduction method of Unterzaucher and Schütze), in which oxygen is converted to CO. The reaction is generally carried out in quartz tubes at modest temperatures (i.e. 400 - 1500 °C) in the presence of graphite and nickel (as catalyst).

Since quartz contains oxygen, all current techniques are associated with a blank. Fluorine containing samples cannot be analyzed because of the reaction of hydrogen fluoride with quartz and the subsequent water formation. A lot of samples - e.g. sulfates - also cannot be measured either, because at higher reaction temperatures the in-creasing interaction of carbon and the quartz becomes unacceptable.

As a consequence, isotope ratio measurement of oxygen in organic matter has not kept pace with methodological advances that allowed rapid, easy and precise measurement of ¹³C and ¹⁵N by Dumas combustion, as embodied in the CE Elemental Analyzer analyzing via Continuous Flow (CF) inlet system.

To overcome these disadvantages, it was necessary to develop a new Elemental Analyzer, the Thermo Finnigan TC/EA, built especially for oxygen isotope analysis of a wide variety of organic and inorganic compounds (including water) at reaction temperatures up to 1500 °C.

INTRODUCTION (2/2)

The particularity of the TC/EA is a new two-tube technique:

The so called "High Temperature Conversion Reactor" consists of an outer ceramic mantle tube of aluminum oxide and an inner glassy carbon reactor. The space between internal and external tube is continuously flushed with helium to avoid any undesired oxidation.

fig. 1

Elemental Analyzer (TC / EA)

COMPONENTS OF TC / EA

Issue 11/2001

Thermo Finnigan

COMPONENTS OF TC / EA

Pos.	Part No.	Notification	Quantity	
1	112 10 20	reactor holder	1	piece
2	10 877 70	quartz wool	1	piece
3	111 73 32	graphite crucible	5	pieces
4	111 73 90	silver capsules 4 x 6 mm	1	box
5	111 74 30	silver wool	1	piece
6	112 11 20	O-ring, vitone	4	pieces
7	112 11 30	olive, ferrule	5	pieces
8	112 11 40	screw	5	pieces
9	111 74 00	glassy carbon granulate	50	gr
10	112 13 10	reactor, glassy carbon	1	piece
11	112 13 50	tube, graphite	1	piece
12	112 13 30	connector ox. Reactor	1	piece
13	112 13 20	ceramic tube	2	pieces
14	112 13 60	crosspiece	1	piece
15	069 11 30	hose	3	m
16	052 13 20	hose coupling	2	pieces
17	112 31 60	crucible holder	1	piece
18	060 54 70	stainless steel capillary 1/16'' x 0.08 mm	2 x 3	m
19	112 10 40	fan (12V)	1	piece
20	106 90 90	main power supply cable	1	piece
21	201 18 40	fuse	1	set
22	112 33 30	benzoic acid	1	gr
23	109 13 00	gloves (small)	1	pair
24	109 12 90	gloves (medium)	1	pair
25	112 13 90	exhaust support	1	piece
26	114 13 80	graphite crucible remover	1	piece

NOTE: Before beginning the Setup, it is important to read the warning information in the chapters <u>"Gas supply"</u>, <u>"Working with the gas cylinders"</u> and <u>"Gas</u> connections".

Elemental Analyzer (TC / EA)

HARDWARE LAYOUT

Issue 11/2001

Thermo Finnigan

HARDWARE LAYOUT (1/2)

- Compressed air Autosampler connection (permanent)
- 1a Compressed air Autosampler connection (time controlled) Impulse from ConFlo II/III
- 2 Reactor inlet
- 3 Autosampler installation platform
- Carrier gas (He) outlet to Autosampler 4
- 5 Purge gas (He) outlet to Autosampler
- 6 Front cover plate (removable by lifting)
- 7 Purge gas (He) pressure regulator
- Purge gas (He) gauge 7a
- Carrier gas (He) pressure regulator 8
- 8a Carrier gas (He) gauge
- 1% H₂ in He pressure regulator 9
- 9a 1% H₂ in He gauge
- 10 Reactor microprocessor temperature controller
- GC column microprocessor temperature controller 11
- 12 Furnace

4 – 1 Thermo Finnigan

fig. 2

HARDWARE LAYOUT (2/2)

Rear panel

1 – 5 See <u>fig. 2</u>

- 6 Fan
- 7 GC in
- 8 Stainless steel capillary 1/16"
- 9 GC box
- 10 GC out (to ConFlo)
- 11 Main power (on/off switch)
- 12 TC/EA out (to GC)
- 13 Compressed air (permanently)
- 14 Compressed air (time controlled)
- 15 Carrier gas (He) in
- 16 1% H₂ in He
- 17 Fuses
- 18 Main power supply

fig. 3

4-2 **Thermo** Finnigan

Elemental Analyzer (TC / EA)

SETUP

Issue 11/2001

Thermo Finnigan

SETUP (1/2)

- 1 Fill the reactor as shown in fig. A.
- 2 Place the O-ring (vitone) at the top of the ceramic tube as shown in fig. B.
- 3 Remove the front cover of TC/EA as shown in fig. 2.
- 4 Place the properly filled ceramic tube inside the furnace through the reactor inlet (fig. 2).
- **5** Install the bottom outlet of the ceramic tube as shown in fig. C.
- 6 Stabilize the reactor by placing the holder beneath it (fig. D).Put the fan close to the nut and connect the power supply wires.
- 7 Connect the Autosampler with the ceramic tube as shown in fig. E.
- 8 Connect time controlled compressed air from ConFlo II/III (manufactured at the end of 1997) to TC/EA (fig. G).
- 9 Connect permanently compressed air from IRMS to TC/EA.
- **Optional:** If the ConFlo II/III has no compressed air outlets (manufactured before the end of 1997) ignore **9** and take both compressed air outlets (permanently and time controlled) from Elemental Analyzer (EA) to run the Autosampler.

10 Using the cross piece connect the main He supply to TC/EA as shown in fig. F (see <u>"gas supply</u>").

- **NOTE:** "High Temperature Conversion" applications need He gas, which is free of water and oxygen. Although using He gas carrier of 99.999% purity, we recommend adding a gas purifier. The use of less pure gas may produce unstable results.
- **11** Set the main He supply to 4.0 bar (fig. H).
- **12** Adjust the pressure regulator of carrier gas (He) to 0.85 bar (fig. 2) \cong 90 ml/min.
- **13** If operating with auxiliary gas (i.e. 1% H₂ in He), adjust this regulator to a slightly higher pressure (fig. 2). Otherwise, reduce pressure to a value below the carrier gas. The auxiliary gauge will automatically show the carrier gas pressure.
- 14 Measure He flow at the GC out (fig. 3). The He flow should be \approx 90ml/min.

SETUP (2/2)

15 Perform a leak check!

<u>NOTE:</u> To perform a simple leak check, increase the He pressure using the pressure regulator. The corresponding pressure gauge should increase gradually, if there is no leak.

- **16** Connect the power supply cable of TC/EA (fig. 3) to a 220V main power supply.
- **17** Switch main power "ON" (fig. 3) and make sure that the fan (fig. 3) is operating.
- **18** Ensure that the fan (fig. D) is operating.
- **19** Reinstall the front cover plate (fig. 2).
- **20** Set the GC column microprocessor temperature controller to 50°C.

(see: microprocessor temperature controller: (c) setting a new temperature value).

- **21** Set the reactor microprocessor temperature controller to 100°C (fig. 2).
- **22** When the temperature is stable, repeat the leak check.
- **23** Gradually increase GC column temperature to 300°C and reactor temperature to 600°C.
- 24 Leave the TC/EA unit for at least twelve hours (during the first installation only).

HOW TO GET STARTED WITH THE SYSTEM (1/2)

- 1 After achieving the temperatures mentioned above, repeat the leak check.
- 2 Set the He flow at 90 ml/min (GC column outlet).
- **3** Set the GC column temperature to 70°C and the reactor temperature to 900°C.
- 4 Connect the GC out (fig. 3) to the ConFlo II/III (fig. G) system and make sure that ConFlo II/III is connected via fused silica capillary and needle valve to your IRMS.

Thermo Finnigan

5 - 2

5

HOW TO GET STARTED WITH THE SYSTEM (2/2)

- **5** Implement all gas connections according to fig. G.
- 6 Switch the ion source of the IRMS "OFF" and slowly open the needle valve.
- 7 Make sure that the high vacuum in the ion source is at 3 1.5×10^{-6} mbar.
- 8 Switch the ion source "ON".

Expected background after one hour:

Mass	measured in cup			
2	2	< 200 mV		
3	3	< 20 mV	NOTE:	An electrostatic energy
28	28	< 100 mV		filter is required.
29	29	< 100 mV		
30	30	< 100 mV		
18	29	< 500 mV		
40	29	< 10 mV		
32	29	< 200 mV		

9 Repeat the leak check, if the background is 1.5 times higher than expected.
 Set the reactor temperature at 1325°C.
 Expected background after three days:

Mass	measured in cup			
2	2	< 200 mV		
3	3	< 20 mV	NOTE:	An electrostatic energy
28	28	< 200 mV		filter is required.
29	29	< 200 mV		·
30	30	< 200 mV		
18	29	< 300 mV		
40	29	< 10 mV		
32	29	< 100 mV		

10 CO gas connection: see "Gas connections".

REACTOR FILLING (1/2)

1 filling for a sample wrapped in a silver capsule (*diameter ≤ 3mm*):

5-4 **Thermo** Finnigan

REACTOR FILLING (2/2)

2 filling for a sample wrapped in a silver capsule (6 $mm \ge diameter \ge 3mm$):

5

5 – 5

Thermo Finnigan

Reactor Filling for Liquid Injection

5 – 5a **Thermo** Finnigan Issue 09/2003

AUTOSAMPLER INSTALLATION

5-6 **Thermo** Finnigan Issue 7/2003

BOTTOM REACTOR CONNECTION

5 – 7 **Thermo** Finnigan Issue 11/2001

REACTOR HOLDER AND FAN

fig. D

5-8 **Thermo** Finnigan Issue 11/2001

5
MAIN HELIUM CONNECTION

fig. F

5-9 **Thermo** Finnigan Issue 11/2001

REACTOR CLEANING

After 200-300 samples have been measured (depending on application and size of samples) the reactor should be cleaned and the ash of the samples be removed. *Procedure*

- 1 Reduce the reactor temperature to 50°C.
- 2 Reduce the column temperature to 50°C.
- 3 After reaching the temperatures turn "OFF" purge and carrier gas (He).
- 4 Switch "OFF" TC/EA (fig. 3).
- 5 Remove the Autosampler (fig. E).
- 6 Remove the front cover plate (fig. 2).
- 7 Put away the fan (fig. D).
- 8 Unscrew the bottom reactor connection (fig. C).
- 9 Pull out the reactor carefully.
- 10 Carefully pour the reactor filling on a clean and dust-free surface.
- 11 Separate the ash from the glassy carbon granulate (the granulate is still usable).
- 12 Exchange the graphite crucible.
- 13 Remove deposits from inside and outside of the reactor by using the graphite rod.
- 14 Renew the quartz wool. If necessary, renew the silver wool.

Replace Graphite Crucible

After approx. 70 - 100 samples have been measured (depending on sample amount and material) the graphite crucible should be cleaned.

Procedure

- 1 Set reactor temperature to 500° C.
- 2 After reaching a temperature of 500°C

(it takes approximately 45 min.) reduce He flow to < 0.2 bar

- **3** Switch "OFF" TC/EA (fig.3).
- **4** Insert He dilution if ConFlo III is installed or close needle valve to IRMS.
- **5** Remove Autosampler (fig.E).
- 6 Remove graphite tube.
- 7 Insert special tool (crucible remover) inside graphite crucible (fig. F1).
- 8 Pull graphite crucible out of the reactor using gloves (crucible is hot!).
- **9** Drop new graphite crucible into the reactor or remove the deposits outside of the graphite crucible and use it again. **fig.**

Thermo Finnigan

5 – 10

High Temperature Conversion

Elemental Analyzer (TC / EA)

GAS CONNECTIONS AND SUPPLY

Issue 11/2001

Thermo Finnigan

GAS CONNECTIONS

CO gas connection / H₂ gas connection

- > Use the Ref 1 port of ConFlo II/III to connect standard gas (H_2 , fig. G).
- ➤ Use the Ref 2 port of ConFlo II/III to connect standard gas (CO, fig. G).

<u>Optional</u>: If the IRMS has a dual inlet system, inject the standard gas (CO) via volume one or volume two.

Other external gas connections are also located at ConFlo II/III rear side (fig. G).

fig. G

- 1 Fused silica capillaries to IRMS
- 2 Remote EA start cable (not necessary, if position 3 is available)
- 3 Compressed air, time controlled (ConFlo II/III)
- 4 EA or TC/EA inlet
- 5 N₂ or H₂ for hydrogen determination
- 6 CO₂ or CO for oxygen determination
- 7 Carrier gas (He) in
- 8 Compressed air (permanently)
- 9 Cable connection

WARNING:

CO gas is toxic! H₂ gas may form explosive mixtures with oxygen!

Inform yourself how to handle these gases by reading the directions for use and asking your local gas cylinder supplier.

Thermo Finnigan does not take any responsibility, if these gases (H_2, CO) are used incorrectly.

The ConFlo III system is provided with an exhaustor you should use.

6 – 1

Issue 11/2001

Thermo Finnigan

GAS SUPPLY

To operate the system of TC/EA, ConFlo II/III and IRMS, several gases are required.

The following purities are provided:

- purge gas (He), carrier gas (He):
- ➤ standard gas (CO):
- 99.996% pure helium 99.997% pure carbon monoxide
- standard gas (H₂):
- 99.996% pure hydrogen
- auxiliary gas (1% H₂ in He)
- **NOTE:** The pressure of new gas cylinders is about 200 bar for helium and hydrogen and about 60 bar for carbon monoxide.

The pressure has to be adjusted to ca. *4 bar* via the reducing valves mounted at the gas cylinder (fig. H).

fig. H

WORKING WITH GAS SUPPLIES

It is strongly recommended to fix the gas cylinders firmly to prevent them from toppling down!

When working with carbon monoxide (CO) good ventilation is essential. Otherwise, the gas can be hazardous to your health!

1 Install an exhaust tube on top of your ConFlo II/III as shown in fig. K to remove the toxic carbon monoxide (CO) from inside the ConFlo II/III out of your working area.

Fire or explosion may be caused by a leak in the hydrogen (H_2) supply!

- **2** Before starting the system, a leak check has to be performed.
 - After mounting the reducing valve to the gas cylinder both valves (i.e. "on/off-valve" and "reducing-valve") should be open as shown in fig. H.
 - Open the main valve (fig. H) for two or three seconds to let the gas purge the whole valve system.
 - > Close "on/off-valve". Then close "main-valve".
 - > Mark manometer positions of "on/off-valve" and "main-valve" and wait for 10 15min.
 - > A leak may be present if the manometer positions have changed.
 - To detect a leak, use soap solution on all valves and connections. Check for bubble formation.

fig. K

High Temperature Conversion

Elemental Analyzer (TC / EA)

TEMPERATURE CONTROLLER

Issue 11/2001

Thermo Finnigan

MICROPROCESSOR TEMPERATURE CONTROLLER (1/2)

a) TC / EA reactor (microprocessor is factory programmed)

- 1 4-digit process display
- 2 4- digit setpoint display
- 3 PGM-key for parameter selection
- 4 Digt-key for selection of digit to be altered
- 5 Increment-key to alter the selected digit
- 6 Key for entering value
 - LED for ramp function (alight when configured)
 - Status indication output 1-3
- 9 Microprocessor temperature controller

fig. 4

Programming a new microprocessor temperature controller

- Press the ENTER key and hold it while simultaneously pressing the PGM key. Programming starts with the information: Al. 1000 on the lower display.
- > Select the following values to program the temperature controller:

AI.	1150	2	(GC box)
Pb.	1	15	(GC box)
d.t	2	15	(GC box)
r.t	12		
су.	0.5		
Hys.	1		
у.	0		
rA.Sd	200	20	(GC box)

Selection is made using the \blacktriangleleft and \blacktriangle keys on the front panel of the temperature controller.

- moves the active position one to the left.
- ▲ increases the value by one.

Each selection has to be saved with *ENTER*. Press the *PGM* button to move to the next item.

7

MICROPROCESSOR TEMPERATURE CONTROLLER (2/2)

- After all selections are made restart programming and pass through the menu until
 y. is displayed again.
- Press the ENTER key and hold it while pressing the PGM key simultaneously to obtain the submenu.

C 111	4001	9001 (GC box)
C 112	10	
SP.L	0	
SP.H	1550	300 (GC box)
OFFS	0	

- > End programming by pressing *ENTER* to save all values.
- After a while, the temperature set for the heater is displayed. The lower green numbers show the heater temperature set. The yellow LED indicates the heating action. The upper red numbers are the read-out of the actual heater temperature. The heating rate is fixed by the parameters given in the example above. Heat the system in steps of ~100 °C up to the final temperature.

b) GC-column reactor (microprocessor is factory programmed)

Programming of a new microprocessor temperature controller

- > Follow the instructions used to set the TC/EA.
- > Change "C 111" to 9001 and SP.H to 300!

c) Setting a new temperature value

- > Press **PGM** only. "sp" will be displayed.
- > Select a new temperature using the arrow keys.
- > When finished press *ENTER*. Then press *PGM*.

Programming the microprocessor temperature controller of Jumo iTRON 16

- Press the "P" key and hold it for two seconds.
- Change the values using the up and down arrows.
- > Select the following values to program the temperature controller:

		reactor heater	GC heater
Pb.1	proportional band 1/factor	10	40
Pb.2	proportional band 2/factor	1	30
d.t.	derivative time in s	2	34
r.t.	reset time in s	12	125
CY.1	switch time output 1	2.0	2
CY.2	switch time output 2	2.0	2
Db		0	0
HyS.1		1	0
HyS.2		1	0
Y.0		0	0
Y.1		100	100
Y.2		0	0
d.F	filter	0.9	2
RA.Sd.		100	40

After all selections are made restart programming. Pass through menu until "Y.O".
 Press "P" key and hold it for two seconds.

7-3 **Thermo** Finnigan Issue 11/2001

High Temperature Conversion

Elemental Analyzer (TC / EA)

OXYGEN MEASUREMENT

Issue 11/2001

Thermo Finnigan

PROCEDURE (1/2)

The TC/EA system promises to significantly simplify and improve current techniques for the analysis of ¹⁸O / ¹⁶O in a wide variety of organic and inorganic materials and compounds. The samples, wrapped in silver capsules and placed into the Autosampler, are continuously purged with helium to prevent contamination with traces of water, oxygen and nitrogen.

Dropping a sample into a graphite crucible, which is exactly positioned in the hottest zone of the glassy carbon reactor, starts the "High Temperature Conversion" (see fig. 5). The reaction temperature varies from 1100 °C for organic samples up to 1450 °C for inorganic samples.

Example 1: Reaction of benzoic acid at T= 1350 °C

 $C_6H_5COOH \rightarrow 3H_2 + 2CO + 5C$

Example 2:

 $H_2O + C \rightarrow H_2 + CO$

Reaction of water at T= 1450 °C

The gaseous products (H_2 , N_2 , CO) of the High Temperature Conversion are separated by a 5 Å packed gaschromatographic molecular sieve column. Liquid organic samples and water can be injected using an Autosampler for liquids and an injection port on top of the reactor.

8

PROCEDURE (2/2)

To prove total conversion to CO and H_2 , the ion current intensity of the masses m/z = 44 (i.e. CO_2) and m/z = 18 (i.e. H_2O) can be monitored.

The highly precise and accurate ¹⁸O/¹⁶O measurements attainable with samples in the microgram range make the technique suitable for studying geochemical and biological processes at natural isotopic abundances as well as for point of origin and adulteration studies.

The very low blank and memory also make the technique suitable for the measure-ment of oxygen isotope tracers, e.g. doubly labeled water analysis.

WARNING:

When working with carbon monoxide (CO) or hydrogen (H_2), good ventilation is essential. Ideally, the CO tank (H_2 tank) should be installed in a gas cabinet connected to an exhaust line.

Wrong handling of the toxic CO gas and the explosive H_2 gas is perilous!

Inform yourself about how to handle these gases by reading the directions for use and asking your local gas supplier. Thermo Finnigan does not take any responsibility if the standard gases (CO, H_2) are not used properly.

- **NOTE:** "High Temperature Conversion" applications need He gas, which is free of water and oxygen. Although using He gas carrier of 99.999% purity, we recommend to add a gas purifier. The use of less pure gas may produce unstable results.
- **NOTE:** Information about background ions from gas impurities is given on page 5-3.

DEFINITION OF A GAS CONFIGURATION FOR AN ¹⁸O-MEASUREMENT

Prior to defining this gas configuration ensure the connected IRMS has the cups set for the simultaneous detection of masses 28, 29 and 30 and mass calibration for these cups has already been performed.

For an ¹⁸O measurement, a new Gasconfiguration has to be created for the masses 28 ($^{12}C^{16}O$), 29 ($^{13}C^{16}O$) and 30 ($^{12}C^{18}O$).

CREATE A GAS CONFIGURATION FOR AN ¹⁸O-MEASUREMENT

- > Open the *Continuous Flow* module.
- > Open the Gas Configuration Editor.
- > Add a Gas Configuration.

New Gasconf	iguratio	on			×
Name	СО				
Template	N2				-
			OK	Cancel	1

- > Select Gas Configuration *N2* as *Template*.
- > Type **CO** for the Name.
- ➢ Confirm with OK.
- Gas Configuration Ec × Delete Add Configurations Name Cup1 Cup2 Cup3 Cup4 Calibration Magnet Cup8 Formula N2 28 29 30 Current [Default] V2 8204 CO Current [Default] 8204 28 29 30 N2 C02 - CO2 44 45 46 Current [Default] 11061 Current [Default] H2 1200 Save & Close Cancel
- Select a Calibration valid for the selected cups.
- Change the Formula from N2 to CO.
- > Press Save & Close.

8 – 3 **Thermo** Finnigan Issue 11/2001

TC / EA CONFIGURATION

Before operating the TC / EA, a Configuration containing the ConFlo II/III Interface and optionally an Autosampler needs to be created in the *Configurator*.

		-		
		n		
		-	-	
			-	

- > Add a new Configuration with the "Add Configuration" button.
- ➢ Give it a name, e.g. "ConFlo II & TC / EA".

- Select one of the "ConFlo II Sets" (also for ConFlo III) and drag it to the Source port — or Capillary port — in the new Configuration.
- Open the complete tree structure of the ConFlo II Interface to check for the attached hardware (TC / EA, Autosampler).
- In case of a ConFlo II and a liquid Autosampler with a RS232 interface to the computer the COM-Port settings can be checked in the "Advanced Mode".
- > Activate the *Advanced Mode* in the *Edit* menu.
- Click with the right mouse button on the Communication Hardware object to open the Properties window.
- **NOTE:** The COM-Port settings are essential for proper communication with the liquid Autosampler. Incorrect settings will lead to inactive liquid Autosampler control.
 - > Close the Configurator window. All settings will be saved automatically.

ConFlo II / III SOFTWARE (1/3)

The Continuous Flow application software allows fully automated isotope ratio determination of oxygen of bulk samples. All parameters relevant for data acquisition of a sample are stored in a *Method*. The following steps are needed to *Define a new Method*.

	Open the "Continuous Flow" module.
ConFlo II & TC / EA	 Select the Configuration for ConFlo II/III applications (e.g. "ConFlo II & TC / EA").
CO	Select the Gasconfiguration for ¹⁸ O determination.
	Create a new Method.

The new Method is structured in Tab pages: Instrument, Time Events, Evaluation, Peak Detection, and Printout. The following Method explains the parameters of an ¹⁸O Method.

Instrument

Instrument Trave Event	Evaluation/SCO Peak Detection/SCO Postaul/SCO		 Select Gas Configuration for ¹⁸O determination (e.g. "CO").
Esperanent Configuration Contract	Continuous llow Conflict I, TC / EA		The <i>Main Script</i> controls the acquisition cycle.
Gascon/gunation Pre Script Man Script	CO		NOTE: It should only be edited by users trained on script editing.
Post Scipt Isotope MS Integration Time Peak Center Cup	0.250 c] Peak Center Preddag (c) [5 [Cup 2] Peak Center Preddag (c)]		Select the <i>Peak Center Cup</i> , e.g. Cup 3 for a triple collector on a Delta ^{Plus} XL (narrow center cup for m/z 29).
Relevence Device	Release 1	*	Peak Center Predelay is the time the system waits between activation of the reference gas and start of the peak center cycle (e.g. > 15 s).

- Peak Center Postdelay is the time the system waits between the end of the peak center cycle and the start of the data acquisition (e.g. 0 s).
- > Integration time is the time integrated to form a data point triplet (e.g. 0.25 s).
- Select the *Reference Port* to be used for peak center (e.g. Reference 1).

ConFlo II / III SOFTWARE (2/3)

Time Events

The "Time Events" list controls all valves of the selected Configuration during data acquisition.

- Insert lines using right mouse button or click on ¹/₂.
- Edit the *Time* at which the event will happen and *double-click* the field of a valve to set or toggle its status to active
- Edit the Acquisition Time. The acquisition time is the end time of data acquisition. After the acquisition time, no further actions will be executed from the time events list.

Evaluation

Nr.:	Time:	Std. Name:
1	90.00	CO-Lab.Tank 💌

The retention time must be set to the "Reference Out" value of the second CO Reference Gas pulse (in "Time Events"). This accommodates for the delay associated with the gas passage through the capillary to the IRMS.

Reference/Blank				
Significant Peak Start [s]	150.000000	Significant Peak Stop [s]	220.000000	
Weight Percent [%]	26.220000			

- Select an *Ion Correction Type* (e.g. "CO Santrock et al.").
- Add a standard using the right mouse button. Enter the retention time of the standard peak(s) defined in "Time Events" which are used for calculating the corresponding delta value(s).

If the assigned time for Standard peak detection falls in between the Peak Start and Peak Stop marks of a peak, this peak will be used for delta value calculation.

- Select a Std. Name or edit the related delta values (user defined).
- Reference / Blank: For a blank determination, a time window needs to be defined by significant peak start and stop in which the corresponding CO peak will appear.
- For weight percent determination type in the appropriate oxygen weight percent of the reference compound used for Calibration.

Issue 11/2001

ConFlo II / III SOFTWARE (3/3)

Peak Detection

Detection Parameter		Backgrou	und Paramete	w
Start Slope [mV/s]	0.2	Backgro	und Type	Individual BGD
End Slope [mV/s]	0.4	History ([8]	5
Peak Min Height [mV]	50			
Peak Resolution [%]	20	Perform	Background	Detection 🔽
Max Peak Width [s]	180			
Detection on Many	28			

- Edit Start Slope, End Slope, and Peak Min. Height. All other parameters can be kept default.
- A five point average slope of 0.2 mV/s (Start Slope) and of 0.4 mV/s (End Slope) is recommended for safe recognition of the peak boundaries. The best slope values depend on the nature of the chromatogram.
- Peak Min. Height limits the number of reported peaks. Default is 50 mV.
- Individual BGD is the default Background Type.

Printout

fault Result.inv	
gle Result.irw	
	lault Result inv gle Result inv

- Single Print selects a print template from the Result Workshop for an individual printout per sample.
- Sequence Print selects a print template from the Result Workshop for a reduced print per sample within a sequence summary.

ZERO ENRICHMENT (ST ON / OFF TEST, 1/4)

We assume that the user already has working experience with the ConFlo II / III Interface and IRMS. It is recommended to perform a simple check in order to test the analytical condition of the complete system (i.e. TC / EA, ConFlo II/III, IRMS) before measuring any samples.

1 Use the following default *Method* ("CO_zero.met") as a guideline.

Instrument	Gasconfiguration	Со	*
	Pre Script		
	Main Script	Acquisition.sct	
	Post Script		
	Reference Port	Reference 1	•
Isotone MS	Integration Time	0.250 [s] Peak Center Predelay (s) 15	
	Peak Center Cup	Cup 3 Peak Center Postdelay (s) 15	

<u> </u>	Time [s]	Start Sampler	Elemental Anal On	Dilution - Open	Reference 1 - Open	Reference 2 - Open	Switch Gas
	30				•		
	50				0		
	80				0		
	100				0		
	130				0		
	150				0		
	180				0		
	200				0		
	230				0		
	250				0		
	280				0		
	300				9		
	330				0		
	350				9		
	380				0		
	400				0		

ZERO ENRICHMENT or ST ON / OFF TEST (2/4)

Method CO_zero.met continued

Evaluation

CO Santrock et al.

Ion Correction Type:

Nr.:	Time:	Std. Name:	δ 13C	δ 180	
1	150.00	CO_zero	• 0.000	0.000	

Peak Detection

٢	Peak Detection			
	Detection Parameter	0.2	Background Parameter	Individual BGD
	Start Slope [mV/s]	0.4	History (s)	5
	Peak Min Height (mV)	50	finder ([6]	
	Peak Resolution [%]	20	Perform Background D	etection 🔽
l	Max Peak Width [s]	180		
	Detection on Mass	28		
I	Perform Peak Detection	N		
	Perform Timeshift	N	Advanced Parameter >	>

Printout

rintout Template:	5	
Single	Default Result.irw	
Sequence	Default Sequence Result.IRW	

ZERO ENRICHMENT or ST ON / OFF TEST (3/4)

- Set the ion intensity of mass 28 (¹²C¹⁶O) to approximately 3 4 V by opening Reference 1 and adjusting the pressure to the desired intensity.
 - Create a new **Sequence** or select a predefined Sequence from the File Browser. Refer to page 8 15.

Line	1	Weight [mg]	Туре	Identifier 1	Method	
1	×		Sample	std on/off	CO_zero.met	•

Start

4 Press the Start button.

3

5 Select your destination folder.

Make your Printout decision ("Yes" / "No").

Finally, confirm with "OK".

ZERO ENRICHMENT or ST ON / OFF TEST (4/4)

со	Sequence	e Error	Extended							
Nr.	Rt [s]	Width [s]	Ampl. 28 [mV]	BGD 28 [m∨]	BGD 29 [m∨]	BGD 30 [m∨]	Area [∀s]	δ 13C [‰] vs. PDB	δ 180 [‰] vs. V-SMOW	AT% 180 [%]
1	56.8	35.7	3915	7.6	8.4	5.9	78.419	-0.016	-0.088	0.200101
2	106.6	34.9	3913	8.9	9.8	6.8	78.431	-0.039	-0.051	0.200109
3*	156.7	37.2	3915	9.1	10.0	6.9	78.711	0.000	0.000	0.200119
4	206.6	35.6	3919	9.2	10.2	7.1	78.638	-0.036	-0.062	0.200106
5	256.9	36.2	3921	9.3	10.3	7.1	78.571	-0.022	-0.033	0.200112
6	306.7	35.1	3917	9.4	10.4	7.1	78.435	-0.026	0.007	0.200120
7	356.7	35.6	3916	9.4	10.4	7.3	78.355	-0.026	-0.112	0.200096
8	406.8	35.1	3901	9.5	10.5	7.3	78.354	-0.050	0.034	0.200126
9	456.9	35.9	3907	9.5	10.6	7.4	78.407	-0.030	-0.098	0.200099

To calculate the standard deviation of <u>*delta* 29 / 28</u> ($^{13}C^{16}O$ / $^{12}C^{16}O$):

- > Hold the Shift-key and mark the δ **13C vs. PDB** column by a right-click.
- > Then choose "Calculate" and finally look for the "Std. Dev." value.

The standard deviation of <u>delta 29 / 28</u> ($^{13}C^{16}O$ / $^{12}C^{16}O$) should be < 0.08 ‰.

To calculate the standard deviation of <u>delta 18 / 16</u> ($^{12}C^{18}O$ / $^{12}C^{16}O$):

- > Hold the Shift-key and mark the δ **18 O** vs. V-SMOW column by a right-click.
- > Then choose "Calculate" and finally look for the "Std. Dev." value.

The standard deviation of <u>delta 18 / 16</u> (${}^{12}C^{18}O$ / ${}^{12}C^{16}O$) should be < 0.1 ‰.

SOLID-AUTOSAMPLER LEAK TEST

While monitoring mass 28, start the solid-autosampler manually. The intensity of mass 28 should not increase more than 20 mV. If the measured value is 1.5 times higher than expected, increase the He purge and repeat the test.

- **NOTE:** a) Neither Reference 1 nor Reference 2 nor He dilution should be open during the test.
 - *b)* To activate the solid-autosampler manually, switch the symbol to the position "Start" by a mouse click.

HOW TO START AN OXYGEN MEASUREMENT (1/5)

1 Hardware preparation

a) Reactor temperature:	1450 °C
b) GC column temperature:	90 °C

- c) He flow: > 90 ml/min
- d) Operating with 1% H₂ in He: set pressure regulator 0.1 bar higher than carrier gas (He).
- e) Operating without aux. gas: turn down aux. pressure regulator so that auxiliary gas pressure decreases until shown pressure equals pressure of carrier gas.

2 Define a Method

- f) Purge (He flow is sufficiently open)
- g) Standard gas CO on ConFlo II/III
- (or inside variable volume) available h) Needle valve (ConFlo II/III - IRMS connec-
- tion) is open i) Standard gas intensity (CO) is adjusted at about 2 - 4 V (as with zero aprichment)
- at about 3 4 V (as with zero enrichment)

<u>Instrument</u>	Gasconfiguration	n CO					•
	Pre Script						
		1					
	Main Script	Acquisit	ion.sct				🗀 🕡
	Post Script						
Isotope MS	Integration Time	0	.250 [s]	▼ Peal	Center Predelay	(s) 15	
	Peak Center Cu	P O	up 3	▼ Peal	< Center Postdela	y (s) 15	
		1.114					
	Reference Port	F	leference 1				-
Time Events	🥟 Time [s]	Start Sampler	Elemental Anal On	Dilution - Open	Reference 1 - Open	Reference 2 - Open	Switch Gas
	20				0		
	40						
	70						
	90						
	95		0				
	100						
	360						
	380						
	400						
	420						
Acq. End Time	Acquisition 1	lime [s]	450	÷			

8-13 **Thermo** Finnigan

Issue 11/2001

HOW TO START AN OXYGEN MEASUREMENT (2/5)

2 Define a Method (continued)

....

Evaluat	lion	

CO Santro	ck et al.			
Nr.:	Time:	Std. Name:	δ 13C	ð 180
1	90.00	CO-Lab.Tank	▼ 0.000	9.050
Reference/Blan Significant Peal	k	10 Signifi	cant Peak Stop [s]	220.00000

Peak Detection

Detection Parameter		Background Parameter
Start Slope [mV/s]	0.2	Background Type Individual BGD
End Slope [mV/s]	0.4	History [s] 5
Peak Min Height [m∀]	50	
Peak Resolution [%]	20	Perform Background Detection
Max Peak Width [s]	180	
Detection on Mass	28	
Perform Peak Detection	V	
Perform Timeshift	v	Advanced Parameter >>

Printout

Single Print	Default Result.irw	
Sequence Print	Default Sequence Besult inv	

HOW TO START AN OXYGEN MEASUREMENT (3/5)

- 3 Place a sample (e.g. 0.285 mg of benzoic acid) in the solid-autosampler.
- 4 Create a new Sequence.
- **5** Define the number of samples.

6 Edit the Sequence list.

Line	1	Line Contraction (March 1)		Identifier 1	Method
1	×	0.285	Sample	benzoic acid	CO-only.met
2	×	0.273	Sample	benzoic acid	CO-only.met
3	×	0.291	Sample	benzoic acid	CO-only.met

Peak CenterEnable ivito perform a Peak Center prior to measurement.Identifier 1Edit text to identify sample.MethodSelect IRMS Method.

7 Press the "Start" button.

HOW TO START AN OXYGEN MEASUREMENT (4/5)

8 Define Results Export and Printout parameters.

🌮 🔶 Template	DataSequenceHeader
eauta	
Z Store F	Auto Numerate Folder
Export WK1 File	1 File/Sequence C 1 File/Sample
ASCII export (*.csv)	🕈 1 Fle/Sequence 🧖 1 Fle/Semple
Folder Name	Pre Post ACQ-Results
File Name	Pre Post Acquisition
Printout	Resultworkshop Templates
C No	C 1 Printout/Sequence
Yes	I Printout/Sample
roperties	
Comment No Comment	Measure only Selection

9 Press "OK" to start Sequence Acquisition.

Events during Acquisition

- Peak Center procedure
- First CO Reference Gas pulse activated at 20 s (duration: 20 s).
- Second CO Reference Gas pulse activated at 70 s (duration: 20 s). It is assigned as Standard pulse for delta value calculation. Refer to <u>"Time" column in "Evaluation" tab</u> on page 8 – 6.
- Sample is dropped into reactor.
- Sample peak appears approximately 100 s after start of reaction.
- > Third CO Reference Gas pulse activated at 360 s (duration: 20 s).
- Forth CO Reference Gas pulse activated at 400 s (duration 20 s).
- Acquisition stops at 450 s.

8 – 16 **Thermo** Finnigan Issue 11/2001

8

HOW TO START AN OXYGEN MEASUREMENT (5/5)

After finishing data acquisition the printer creates a data output sheet as defined by the selected Results Workshop template (*.irw). The Results are also exported to a spreadsheet file.

C:\Finnigan\ISODAT NT\Global\User\Conflo II Interface\Results\Benzoic acid CO.CF

Line		Weight [mg]	Туре	Identifier 1	Method	
1	×	0.285	Sample 💌	benzoic acid	CO-only.met	٠

со	Sequence	Error	Extended							
Nr.	Rt [s]	Width [s]	Ampl. 28 [mV]	BGD 28 [m∨]	BGD 29 [m∨]	Area [Vs]	δ 13C [‰] vs. PDB	δ 180 [‰] vs. ∀-SMOW	AT% 180 [%]	Wt% [%]
1	46.4	29.8	6780	373.8	427.0	128.968	0.061	9.061	0.201928	-
2*	96.4	27.1	6784	373.0	426.0	128.724	0.000	9.050	0.201926	•
3	193.3	76.3	7490	369.5	421.3	98.534	10.316	25.803	0.205272	26.2200000
4	386.3	27.3	6760	368.2	419.1	128.499	0.017	9.147	0.201946	•
5	426.5	27.3	6750	371.1	423.2	128.486	-0.029	8.965	0.201909	-

8 – 17 **Thermo** Finnigan Issue 11/2001

WEIGHT PERCENT DETERMINATION - GENERAL

1 Identification of the significant peak's position

In the Method's Evaluation tab a weight percent determination can be chosen for the significant Peak of *References*. It cannot be performed in case of Blanks.

All calculations of weight percent determination refer to the so called *significant Peak*. To first and foremost determine its position, in the Method's Evaluation tab an interval must be defined by a Significant Peak *Start* value and a Significant Peak *Stop* value.

Since this interval will not automatically be identified, a sample chromatogram must be recorded which reveals the position of the significant Peak. Consider that the position can vary slightly over time due to alteration processes (e.g. of glassy carbon). Dimensioning the interval sufficiently broad will prevent the significant peak from falling or migrating outside it.

2 Calculation of weight percent

Weight percent determination bases upon the relationships between peak area of the significant peak and sample weight.

First, a Reference (i.e. a well-known substance; not necessarily identical to the compound of the later sample) is measured to obtain the k-Factor k according to the formula:

$$k = \frac{w_{ref} * m_{ref}}{A_{ref}}$$

The Reference's weight percent w_{ref} and mass m_{ref} are given whereas its peak area A_{ref} emerges from the measurement. Possibly, A_{ref} can be used blank-corrected to enhance the precision of k-Factor calculation.

Using the k-Factor just calculated, now the sample itself can be measured. Its peak area A_{sample} results (possibly blank-corrected), whereas sample weight m_{sample} and k-Factor k are well known, so that the parameter of interest, the sample's weight percentage w_{sample} , can be easily obtained rearranging the above equation:

$$w_{sample} = \frac{k * A_{sample}}{m_{sample}}$$

8 – 18 **Thermo** Finnigan Issue 11/2001

WEIGHT PERCENT DETERMINATION - PROCEDURE FOR OXYGEN

The system (i.e. TC/EA, ConFlo II/III, IRMS) requires a Calibration procedure in order to calculate the amount of oxygen in the sample.

- **1** Weigh a reference compound, e.g. 0.285 mg of benzoic acid, in a silver capsule and wrap it carefully.
 - **<u>NOTE:</u>** The precision of weighing is directly related to the precision of weight percent determination.
- **2** Place the capsule in the solid-autosampler.

3 Method (Evaluation tab)

Reference/Blank			
Significant Peak Start [s]	150.000000	Significant Peak Stop [s]	220.000000
Weight Percent [%]	26.220000		

4 Sequence

Line	Weight [mg]	Туре	Identifier 1	Identifier 1 Method		
1	0.285	Reference	 Benzoic acid 	CO-only.met	•	

The Method "CO-only.met" is described in detail on pages 8 - 8 and 8 - 9.

5 Start the Sequence.

NOTE: In order to obtain reasonable results, this Calibration has to be performed daily and after changing any parameters of the system (TC/EA, ConFlo II/III, IRMS).

8 – 19 **Thermo** Finnigan Issue 11/2001

BLANK MEASUREMENT - GENERAL (1/2)

Blank value determination can help to enhance precision. The resulting blank value is then subtracted from both reference and sample peaks. Thus, the chronological order to proceed normally is: 1. Blank, 2. Reference, 3. Sample.

Blank and Reference values are stored in separate databases. A further criterion of separate storage is the gas name. To measure samples *directly*, i.e. without Blank and Reference before, delete these databases via *Quant* Menu.

In the following, the different commands for Blank measurement will be explained.

Line		Weight [mg]	Туре		Identifier 1	Method		
1	V	0.285	Sample	-	Blank	CO-only.met	•	
			Sample Blank Start Blank Mean Add Blank Mean Reference Start Reference Regression Add Reference Regression Start Reference Mean Add Reference Mean	-4 F				From the Type Menu select Blank.

Blank command

The previous Blank value will be deleted. Instead, the result of this current Blank measurement will be enlisted as new Blank value.

Start Blank Mean command

Line		Weight [mg]	Туре	Identifier 1	Method	
1	V	0.285	Sample 🔹	Blank	CO-only.met 💌	
			Sample Blank Start Blank Mean Add Blank Mean Reference Start Reference Regression Add Reference Regression Start Reference Mean Add Reference Mean			From the Type Menu select Start Blank Mean

The previous Blank value will be deleted. Instead, the result of this current Blank measurement will be enlisted as new Blank value. Further Blanks can be added to be taken into account determining the Blank Mean.

BLANK MEASUREMENT - GENERAL (2/2)

Add Blank Mean command

Line		Weight [mg]	Туре	Ì	Identifier 1	Method			
1	×	0.285	Sample	-	Blank	CO-only.met	•		
			Sample Blank Start Blank Mean Add Blank Mean Reference Start Reference Regression Add Reference Mean Add Reference Mean					>	Frc sel

From the *Type* Menu select *Add Blank Mean*.

The old Blank Mean will be corrected using the new Blank value to yield the new Blank Mean according to the formula:

$$m_b' = \frac{m_b * n_b + b}{n_b + 1}$$

where:

m _b '	new Blank Mean
mb	old Blank Mean
n _b	number of previously measured Blank values (since Blank Start)
b	new Blank value

BLANK MEASUREMENT - PROCEDURE FOR OXYGEN

The tiny blank signal must be detected in the window.

1 Place an empty silver capsule into the solid-autosampler.

2 Method (Evaluation tab)

Reference/Blank			
Significant Peak Start [s]	150.000000	Significant Peak Stop [s]	220.000000
Weight Percent [%]	26.220000		

3 Sequence

Line	Weight [mg]	Туре	Identifier 1	Method		
1	0.000	Blank 💌	Blank	CO-only.met 💌		

The Method "CO-only.met" is described in detail on pages 8 - 8 and 8 - 9.

4 Start the Sequence.

NOTE: In order to obtain reasonable results, this Calibration has to be performed daily and after changing any parameters of the system (TC/EA, ConFlo II/III, IRMS).

REFERENCE MEASUREMENT - GENERAL (1/2)

Three procedures (i.e. commands) exist to perform Reference measurements:

- ➢ Reference
- Start Reference Mean
- Start Reference Regression

Reference command

The previous Reference value will be deleted. Instead, the result of this current Reference measurement will be enlisted as new Reference value.

Start Reference Mean command

Line		Weight [mg]	Туре	Identifier 1	Method	1
1	V	0.285	Sample	Reference	CO-only.met	
			Sample Blank Start Blank Mean Add Blank Mean Reference Start Reference Regression Add Reference Regression Start Reference Mean			From the Type Menu select Start Reference Mean.

The previous Reference value will be deleted. Instead, the result of this current Reference measurement will be enlisted as new Reference value. Further References can be added to be taken into account determining the Reference Mean.

8 – 23 **Thermo** Finnigan Issue 11/2001

REFERENCE MEASUREMENT - GENERAL (2/2)

Add Reference Mean command

The old Reference Mean will be corrected using the new Reference value to yield the new Reference Mean according to the formula:

$$m_r' = \frac{m_r * n_r + r}{n_r + 1}$$

where:

m _r '	new Reference Mean
m _r	old Reference Mean
n _r	number of previously measured Reference values (since Reference Start)
r	new Reference value

REFERENCE REGRESSION (1/2)

In addition to determining a Reference *Mean* (see above) a Reference *calibration curve* can be generated: the k-Factor is plotted vs. the sample weight.

The Reference *Mean* is calculated in case of References of *very similar* weights. With References of *considerably differing* weights, it is advantageous to generate a Reference *calibration curve*. Measuring a sample afterwards, the k-Factor can be acquired using the calibration curve.

REFERENCE REGRESSION (2/2)

Start Reference Regression command

This command corresponds to the *Start Reference* **Mean** command (see above). The previous Reference value will be deleted. Instead, the result of this current Reference measurement will be enlisted as new Reference value. Further References can be added to extend the Reference calibration curve.

Add Reference Regression command

Line		Weight [mg]	Туре		Identifier 1	Method		
1	×	0.285	Sample	-	Reference	CO-only.met	•	
			Sample Blank Start Blank Mean Add Blank Mean Reference Start Reference Regression Add Reference Regression Start Reference Mean Add Reference Mean	A.				From the Type Menu select Add Reference Regression.

This command corresponds to the *Add Reference* **Mean** command (see page 8 - 24). A new point on the calibration curve is enlisted.

High Temperature Conversion

Elemental Analyzer (TC / EA)

HYDROGEN MEASUREMENT

Issue 11/2001

Thermo Finnigan

Hydrogen determination requires an isotope ratio mass spectrometer (IRMS) with Faraday collectors for the masses m/z = 2 and m/z = 3. The measurement of masses 2 and 3 of hydrogen in the presence of helium as carrier gas has posed experimental difficulties to be taken care of. A contribution of the large ⁴He⁺ peak would corrupt the measurement of the small HD beam at mass 3. Collisions in the ion source of the IRMS and along the flight tube lead to an energy loss and therefore a tailing of ⁴He⁺. A portion of this tail would be collected in the m/z = 3 cup. For a desired He flow of approximately 0.3 ml/min in the ion source, and with typical Faraday cup dimensions, the HD signal (~ 10⁻¹² A) is superposed by ⁴He⁺ ions of 2 * 10⁻¹⁰ A.

To overcome this effect, the Faraday cup of mass m/z = 3 has a special Electrostatic Energy Filter. It consists of a three-element deceleration ion arrangement, which is integrated within the ion collector between collector slit and Faraday cup (Delta^{Plus}XL, Delta^{Plus}XP, MAT 253).

PROCEDURE (1/2)

Among all elements, hydrogen has the largest naturally occurring variation in the ratio of its stable isotopes. H₂ gas can be produced quantitatively from micromole amounts of organic samples in continuously flowing gas systems.

Hydrogen and oxygen measurements are performed with the same reactor. Depending on the sample amount, either the reactor shown in fig. A1 (see page 5 - 4) or the reactor pointed at in fig. A2 (see page 5 - 5) is used.

The samples, wrapped in silver capsules and placed into the Autosampler, are continuously purged with helium to prevent contamination with traces of water, oxygen and nitrogen. Dropping one sample into a graphite crucible, which is exactly positioned in the hottest zone of the glassy carbon reactor starts the "High Temperature Conversion Reaction". The measurements are generally carried out at a reaction temperature of 1450 °C. The HD ratios are determined by monitoring the masses 2 and 3 of hydrogen.

PROCEDURE (2/2)

The delta values (∞) are calculated versus H₂ reference gas pulses introduced via the interface.

Schematic:

ConFlo II / III AND TC / EA CONFIGURATION

Hydrogen determination requires a mass spectrometer containing the cups for the masses m/z = 2 and m/z = 3 with an Electrostatic Energy Filter (Delta^{PLUS} XL, MAT 253). It is assumed that the mass calibration for these cups has already been performed. For a ²H measurement, a new Gas Configuration has now to be created for the masses 2 and 3.

CREATE A GAS CONFIGURATION FOR A ²H MEASUREMENT

- > Open the *Continuous Flow* module.
- > Open the **Gas Configuration Editor**.
- > Add a Gas Configuration, if a H_2 Gas Configuration is not yet available.

Ne w Gasconf	igurati	on			×
Name	HŹ				_
Template	H2				•
			OK	Cancel	

- Select any Gas Configuration as *Template* or *H2*, if already available.
- > Type *H2* for the Name.
- Confirm with OK.

Add Delete					
Configurations					
Name	Cup1	Cup8	Calibration	Formula	Magnet
N2			Current [Default]	N2	8204
CO			Current [Default] -	CO	8204
002			Current [Default]	CO2	11061
H2	2	3	Current [Default]	H2	1200
c[Contration .	•

- Select a *Calibration* valid for the selected cups.
- Press Save & Close.
- **NOTE:** Ensure that a Configuration for Con Flo II/III with TC/EA is available. To set up a new Configuration also refer to <u>page 8 – 3</u>.
- **NOTE:** For detailed information refer to the **ISODAT NT Help System (Configurator)**, which is delivered on your ISODAT NT CD.

H₃-FACTOR DETERMINATION (1/3)

- It is assumed that ion source setting for hydrogen determination and mass calibration for hydrogen have already been performed.
- > Standard gases (i.e. CO and H_2) are installed as shown in fig. G on page 6 1.
- > The reactor is properly filled and installed.
- > Setup is completed (refer to page 5 1).
- ➢ Background for the masses 28, 29, 30, 18, 40 and 32 are within the range (refer to page 5 − 3).

The background for the masses 2 and 3 should be:

mass:	intensity:
2	between 180 - 200 mV*
3	< 20 mV

*set electron energy in order to get this range.

NOTE: During the first setup, the H₃-Factor determination must be performed before any other procedure. Later on, at least once a day, a H₃-Factor determination is recommended.

H₃-FACTOR DETERMINATION (2/3)

Protonation reactions in the ion source result in H_3^+ ion production. The H_3^+ portion of the m/z ion beam is determined as H_3 -Factor. The H_3 -Factor is used to correct the H_3^+ contribution to the m/z 3 signal. A low and stable H_3 -Factor is needed for a good DH/ H_2 determination.

> Open the **Continuous Flow** module.

The H3-Factor determination is based on the peak area information of a standard gas on/off chromatogram (*.cf) with standard gas pulses of different amplitudes. Chromatograms are stored in result folders, e.g.:

C:\Finnigan\ISODAT NT\Global\User\ConFlo II Interface\Results\ACQ-Results.

> To load it, press the **Open** button.

Localize your *.cf file and press Open.

C:\Finnigan\ISODAT NT\Global\User\Conflo II Interface\Results\ACQ-Results\010403_102125_H3.CF

The chromatogram will be loaded.

To see how such a chromatogram is obtained (i.e. via stepwise increases of the reference gas pressure using the Method "H2_zero.met"), refer to pages 9 - 7 to 9 - 11.

H₃-FACTOR DETERMINATION (3/3)

H3

> Click the *H3-Factor* button (on Smart Isotope MS bar or on Isotope MS bar).

H3 Factor Determination	
History No H3-Factor [ppm/nA] Created Type	The H3-Factor is calculated on the basis of a chromatogram (*.cf).
Dnline How would you like to Calculate H3 Factor ? C Manual C Top CF Document	≻ Select <i>Top CF Document</i> .
	➢ Press Determine.
Determine Close	
Confirm H3 Factor	 Confirm the calculated H3-Factor by <i>OK</i>. Upon <i>Cancel</i>, a new H3-Factor can be determined.

The calculated H3-Factor is also displayed in the **H3-Factor** tab page beneath the chromatogram and will be used for further data acquisitions (see page 9 - 16).

ZERO ENRICHMENT (ST ON / OFF TEST, 1/5)

We assume that the user already has some working experience with ConFlo II/III Interface, TC/EA and IRMS, and that H_3 -Factor determination has already been performed (refer to pages 9 – 4 to 9 – 6). It is recommended to perform a simple check in order to test the analytical condition of the IRMS before measuring any samples.

The following steps need to be performed to **Define a Method**

The Method is structured in Tab-pages: Instrument, Time Events, Evaluation, Peak Detection, and Printout.

For a detailed explanation of the Method's structure and editing refer to **Define a new Method** on pages 8 - 5 to 8 - 7.

ZERO ENRICHMENT or ST ON / OFF TEST (2/5)

As a guideline, use the following Method ("H2_zero.met").

<u>Instrument</u>	Gasconfiguration	H2	Ŧ
	Pre Script		
	i to outpe	<u>ا</u> ل	Ø
	Main Script	Acquisition.sct 🗀 [D
	Post Script		D
Isotope MS	Isotope MS		
	Integration Time	0.250 [s] Peak Center Predelay (s) 20	
	Peak Center Cup	Cup 8 Peak Center Postdelay (s) 10	
	Reference Port	Defenses 2	7
		Reference 2	

Time Events

🕝 Time [s]	Start Sampler	Elemental Anal On	Dilution - Open	Reference 1 - Open	Reference 2 - Open	Switch Gas
30				0		
50				6		
80				0		
100				0		
130						
150						
180						
200						
230						
250				0		
280				0		
300						
330				0		
350						
380						
400						

Acq. End Time

Acquisition Time [s]	430	
----------------------	-----	--

. .

ZERO ENRICHMENT or ST ON / OFF TEST (3/5)

Method H2_zero.met continued

Evaluation

Nr.:	Time:	Std. Name:		δ 2H
1	150.00	H2-zero	-	0.000
- Reference/Blank -				

Peak Detection

Peak Detection		
Detection Parameter		Background Parameter
Start Slope [mV/s]	0.2	Background Type Individual BGD
End Slope [mV/s]	0.4	History [s] 5
Peak Min Height [m∨]	50	
Peak Resolution [%]	20	Perform Background Detection
Max Peak Width [s]	180	H3 Factor
		H3 Factor: 22.64
Detection on Mass	2	Overwrite 🔽 0
Perform Peak Detection		
Perform Timeshift	J.	Advanced Parameter >>

Printout

28 m		
Single	Default Result.irw	
Sequence	Default Sequence Result.IRW	

9-9 **Thermo** Finnigan Issue 11/2001

9

ZERO ENRICHMENT or ST ON / OFF TEST (4/5)

- 2 Set the ion intensity of mass 2 (H₂) to approximately 4 V.
- 3 Create a new Sequence or select a predefined Sequence from File Browser.

9 – 10 **Thermo** Finnigan Issue 11/2001

ZERO ENRICHMENT or ST ON / OFF TEST (5/5)

C:\Finnigan\ISODAT NT\Global\User\Conflo_II Interface\Results\ACQ-Results\010402_124518_stab.CF

H2	Sequence	Error	Extended						
Nr.	Rt [s]	vVidth [s]	Ampl. 2 [m∨]	Ampl. 3 [mV]	BGD 2 [m∨]	BGD 3 [m∀]	Area [∀s]	δ 2H [‰] ∨s. V-SMOW	AT% 2H [%]
1	38.2	26.9	4212	1448	255.5	-18.4	81.858	-0.406	0.015566
2	88.4	24.6	4198	1444	255.1	-18.0	81.536	-0.439	0.015566
3*	138.4	24.4	4201	1444	255.1	-18.6	81.535	0.000	0.015573
4	188.2	24.1	4206	1443	254.5	-18.4	81.503	-0.292	0.015568
5	238.2	26.7	4205	1443	254.8	-18.2	81.589	-0.426	0.015566
6	288.2	24.9	4209	1444	254.5	-18.5	81.528	-0.340	0.015567
7	338.3	24.9	4197	1442	253.9	-18.3	81.526	-0.792	0.015560
8	388.3	23.9	4198	1442	253.7	-18.1	81.249	-0.908	0.015558
9	438.3	24.4	4196	1440	253.3	-18.5	81.328	-0.764	0.015561

A chromatogram with equal peak heights results. Beneath the chromatogram, the corresponding parameter values are listed.

<u>NOTE:</u> The mean value of standard deviation of <u>delta 3/2</u> should be < 1%.

9-11 **Thermo** Finnigan

9

Issue 11/2001

HOW TO START A HYDROGEN MEASUREMENT (1/5)

1 Hardware preparation

a) Reactor temperature	1450 °C
b) GC column temperature	85 °C
c) He flow	> 110 ml/min

d) Operating with 1% H₂ in He: set the pressure regulator 0.1 bar higher than carrier gas (He).
e) Operating without auxiliary gas:

turn down auxiliary pressure regulator so that auxiliary gas pressure decreases until shown pressure equals pressure of carrier gas.

- f) Purge (He flow is sufficiently open).
- g) Standard gas H₂ on ConFlo II/III (or inside variable volume) available.
- h) Needle valve (ConFlo II/III IRMS connection) is open.
- i) Standard gas (H₂) intensity is adjusted at about: 5.5 V.

2 **Define a Method** (as shown on pages 8 – 5 to 8 - 7).

Instrument	Gasconfiguration	H2					•
	Pre Script						<u> </u>
	Main Script	Acqui	isition.sct				
	Post Script						<u> </u>
<u>Isotope MS</u>	Isotope MS Integration Time Peak Center Cup		0.250 (s) Cup 8	Y Pi	eak Center Predelay eak Center Postdelay	(s) 20 y (s) 10	
	Reference Port		Reference 2				•
<u>Time Events</u>	C Time [s] S S 20 40	tart ampler	Elemental Anal On	Dilution - Open	Reference 1 - Open	Reference 2 - Open	Switch Gas

~	
	1
_	
•	

Issue 11/2001

Thermo Finnigan

9 – 12

HOW TO START A HYDROGEN MEASUREMENT (2/5)

Acq. End Time

Acquisition Time [s] 160

Evaluation

None			
Nr.:	Time:	Std. Name:	δ 2Η

Reference/Blank				
Significant Peak Start [s]	105.000000	Significant Peak Stop [s]	125.000000	
Weight Percent [%]	4.900000			

Peak Detection

Peak Detection		
Detection Parameter		Background Parameter
Start Slope [mV/s]	0.2	Background Type Individual BGD
End Slope [mV/s]	0.4	History [s] 5
Peak Min Height [m∀]	50	
Peak Resolution [%]	20	Perform Background Detection
Max Peak Width [s]	180	H3 Factor
1.15		H3 Factor: 14.464111328125
Detection on Mass	2	Overwrite 🔲 0
Perform Peak Detection	N	
Perform Timeshift	V	Advanced Parameter >>

Printout

Printout Template	-2	
Single	HD_only.IRW	<u> </u>
Sequence	Single Result.IRW	

9 – 13 **Thermo** Finnigan Issue 11/2001

HOW TO START A HYDROGEN MEASUREMENT (3/5)

- **3** Place a sample (e.g. 0.281 mg of benzoic acid) in the solid-autosampler.
- 4 Create a new Sequence.
- **5** Define number of samples.

Sequence Properties	X
Number of Samples	×
ОК	Cancel

6 Edit the Sequence list.

Start	Stop	Insert D	elete Options Auto Sort				
Line		Weight [mg]	Туре	10	dentifier 1	Method	
1	×	0.281	Sample	• t	enzoic acid	HD_only.met	•
2	×	0.291	Sample	▼ Ł	enzoic acid	HD_only.met	*
3	×	0.274	Sample	• t	enzoic acid	HD_only.met	-

Peak CenterEnable in order to perform a Peak Center prior to
measurement.Identifier 1Edit text to identify sample.MethodSelect IRMS Method.

7 Press the "Start" button.

HOW TO START A HYDROGEN MEASUREMENT (4/5)

8 Define Results Storage, Export, and Printout parameters.

Results	
Export W/K1 File	Auto Numerate Folder O 1 File/Sample
ASCII export (*.csv)	© 1 File/Sequence © 1 File/Semple
Folder Name	Pre Post benzoic acid-1
File Name	Pre Post Acquisition
Printout	
No	
C Yes	
Properties	
Properties	a state of

9 Press "OK" to start Sequence Acquisition.

Events during Acquisition

- Peak Center procedure
- First H₂ Reference Gas pulse activated at 20 s (duration: 20 s).
- Second H₂ Reference Gas pulse activated at 60 s (duration: 20 s).
- Sample is dropped into reactor at 90 s.
- \succ H₂ sample peak appears approximately 15 s after start of reaction.
- Acquisition stops at 160 s.

HOW TO START A HYDROGEN MEASUREMENT (5/5)

After finishing data acquisition the printer creates a data output sheet as defined by the selected Results Workshop template (*.irw).

The Results will also be exported to a spreadsheet file, if activated.

C:\FINNIGAN\ISODAT NT\Global\User\Conflo II Interface\Results\Benzoic acid HD.CF

H2	Sequence	Sequence Error Extended										
Nr.	Rt [s]	Width [s]	Ampl. 2 [m√]	Ampl. 3 [mV]	BGD 2 [m∨]	BGD 3 [mV]	R 3/2	Area [∀s]	δ 2H [‰] vs. V-SMOW	AT% 2H [%]	Wt% [%]	
1	28.9	26.5	8288	2883	272.9	-0.7	0.0002259	152.806	-274.768	0.011294	10.9420167	
2*	68.9	24.4	8266	2872	272.4	-0.6	0.0002259	151.501	-274.779	0.011294	10.8485299	
3	111.3	52.6	9074	4005	273.3	-0.8	0.0002850	65.185	-85.232	0.014245	4.9321373	

High Temperature Conversion

Elemental Analyzer (TC / EA)

DUAL MEASUREMENT

Issue 11/2001

Thermo Finnigan

INTRODUCTION

It is possible to perform dual measurements of hydrogen and oxygen from a single sample with the system (TC/EA, ConFlo II/III and IRMS) in less than 7 minutes offering fast sample throughput and high productivity. The technique is suitable for both solid and liquid samples.

Schematic diagram:

fig. 12

As shown in fig. 12, different Autosamplers are used to measure different sample types.

Concerning the installation of the A128S Autosampler (solid samples) refer to page 5 - 6. For the corresponding reactor packing refer to pages 5 - 4 and 5 - 5.

PROCEDURE

For the analysis of two isotopic species (hydrogen and oxygen) from a single sample, a Method, which comprises both of them has to be defined. The acquisition can be completed after less than 7 min (400 s).

As soon as the hydrogen peak (3) has been identified, ISODAT NT stops the HD acquisition. The magnet jumps to the CO Configuration (see: "Switch Gas" column in the Time Events list on page 10 - 8).

If no hydrogen peak can be found, ISODAT NT waits a certain time (e.g. 25 s). After each injection, immediately data acquisition follows.

Schematic chromatogram:

fig. 13

10 – 2 **Thermo** Finnigan Issue 11/2001

HOW TO PERFORM A JUMP CALIBRATION (1/4)

After determining the H3-Factor (refer to page 9 - 4), a so-called *Jump Calibration* must be performed. A Jump Calibration calibrates for a fast variation of the magnetic field.

In order to determine the isotope ratios of different elements during the same run, switching to another Gas Configuration is necessary.

In contrast to a *single* element measurement, in which the magnetic field runs the gamut from high to low and after that to the pre-calculated magnetic field, there is not sufficient time in *dual* measurement to perform this procedure for the next gas configuration.

For this reason, a Jump Calibration from the first gas configuration to the next gas configuration is necessary.

After the Jump Calibration has been performed, the computer finds exactly the peak center even without performing any peak center procedure.

A Jump Calibration should be performed daily to stabilize the performance of the magnet.

NOTE: Both Gas Configurations used (i.e. "H2" and "CO") need to be calibrated prior to Jump Calibration.

2

Open Instrument Control.

ConFlo II & TC / EA & AS 💌

Choose your *Configuration* containing ConFlo II and TC/EA (also in case of ConFlo III interface).

Turn to the *Devices* window by pressing this Icon.

*& Conilo II Interface -	sotope MS/Copillary/Conflo II Interface	Ref 1 Ref 2	
Elemental Analyzer	<i>Devices</i> window	He Dilution	/Capillary

Open Reference 1 by a click on **Ref 1** capillary.

Thus, the blue capillary symbol elongates and CO enters the system.

10 – 3 **Thermo** Finnigan Issue 11/2001

HOW TO PERFORM A JUMP CALIBRATION (2/4)

Slow: compensate hysteresis by Max/Min settings of the magnet.

- Fast: magnet setting of Jump Calibration
- HV: high voltage setting of Jump Calibration
- **NOTE:** If no Jump Calibration is available in the list, create a new one as shown below.

HOW TO PERFORM A JUMP CALIBRATION (3/4)

Comment: How to create a **new** Jump Calibration

Available Jump Calibrations	2 Fast 2 HV	Q Creation info	Descriptio	n Close	Press the New button.
Create Jump Calibration From Gasconfiguration To Gasconfiguration Pre Jump Delay [s]	H2 C0 10	Post Jump Delay [s]	× •	From Ga To Gaso	asconfiguration select H2 . configuration choose CO .
Magnet Window [Steps]	10	OK	Cancel	Press O	K.

NOTE: Magnet jumps are always from a low mass to a high mass (e.g. 2 to 28 at H₂→CO or 28 to 44 at N₂→CO₂).

Instrume	ent Control 🛛 🕅
⚠	Make sure that the Reference Port for for CO is open.
	Continue?
	<u>Yes</u> <u>N</u> o

Confirm with **Yes**, because you have already opened the Reference Port.

HOW TO PERFORM A JUMP CALIBRATION (4/4)

Instrume	nt Control 🛛 🕅
?	Recalibrate Jump from H2 to CO
	<u>Yes</u> <u>N</u> o

> Press **Yes** to start Jump Calibration.

Jump Calibration Procedure

- **1a** Jump to CO (along hysteresis curve).
- **1b** Perform a peak center for CO in order to get the signal height.
- **2** Jump to H_2 (along hysteresis curve; H_2 is origin).
- 3a Jump to CO (not along hysteresis curve).
- **3b** Perform a peak center for CO in order to catch the peak.

Peak Center	Peak Center
Standard Peak Center Channel: Cup 3 Macro: Peak Center	Jump Calibration Cycle 1 Channet: Cup 3 Macro: Jump Center
Pass 1 Carter Control	Pass 1 ● SMass 27.98 [C2] ■ Mass 28.98 [C3] Mass 29.98 [C4] 10000- 2050.00
1a 1800 1800 2000 2200 2400 2800 2800 ScaleHV (Steps) Pass 2	2 1400 1600 1800 2000 2200 2400 2600 2800 ScaleHv [Steps] Pass 2
	H2 ● ⊘ Mass 27.98 (C2) ■ Mass 28.98 (C3) ⊗ Mass 29.98 (C4)
1600 1600 2000 2200 2400 2600 2800 Scaletty (Steps)	1400 1600 1800 2000 2200 2400 2600 2800 ScaleHv [Steps]
Cancel	Cancel

Repeat until magnet field setting is within the "magnet window" defined.

HOW TO START A DUAL MEASUREMENT (1/7)

1 Hardware preparation

a) Reactor temperature	1450 °C
b) GC column temperature	90 °C
c) He flow	> 80 ml/min (≈ 1 bar)
d) Operating with $1\% H_2$ in He:	
set the pressure regulator 0.1	bar higher than carrier gas (He).
e) Operating without auxiliary ga	S:
turn down auxiliary pressure r	egulator so that auxiliary gas pressure decreases
until shown pressure equals p	ressure of carrier gas.
f) Purge (He flow is sufficiently o	pen).
g) Standard gas H ₂ on ConFlo II	/III - or inside variable volume - available
h) Standard gas CO on ConFlo I	I/III - or inside variable volume - available
i) Needle valve (ConFlo II/III - IR	MS connection) is open.

- j) Standard intensity (H₂) is adjusted at about 5.5 V.
- k) Standard intensity (CO) is adjusted at about 3 4 V.
 - **2** Determine *H3-Factor* as described on pages 9 4 to 9 6.
 - **3 Define a Method** (as shown on pages 9 12 to 9 13).

As a guideline, use the following Method ("HD_CO.met"):

Instrument

	Gasconfiguration	H2	-
	Pre Script		
	Main Script	Acquisition.sct	
	Post Script		
<u>Isotope MS</u>	Isotope MS Integration Time Peak Center Cup	0.250 [s] Peak Center Predelay (s) 20 Cup 8 Peak Center Postdelay (s) 10	
	Reference Port	Reference 2	-

¹⁰⁻⁷ **Thermo** Finnigan

Issue 11/2001

HOW TO START A DUAL MEASUREMENT (2/7)

Time Events

Options		×		
lsoo	lat Object			
Method Switcher				
Enable MethodSwi	tcher 🔽			
Gasconfiguration	СО	•		
Event	Isodat@Eval@PeakFound	•		
Waiting Time [s]	25			
Post Script				
······				
	Lancel			

- The Gas Configuration to be switched to is selected in the *Gasconfiguration* menu (e.g. "CO").
- The switch will be performed when the peak has been found. This is defined in the *Event* menu (e.g. "Isodat@Eval@PeakFound").
- Type in the last jump time at *Waiting Time*. At e.g. 130 s, waiting for the peak begins. If a peak is found, the jump takes place. If no peak is found, the waiting time elapses before the jump takes place.
- Select a *Post Script*, which will be executed during the jump.
- **NOTE:** For samples with a high O to H ratio, the activation of the dilution can be directly linked to the magnet jump to CO. In this case, use the *He dilution Script*.

10 – 8 **Thermo** Finnigan Issue 11/2001

HOW TO START A DUAL MEASUREMENT (3/7)

2 Define a Method (continued)

NOTE: For H₂ and CO *different* Evaluation tabs, Peak Detection tabs and Printout tabs appear (e.g. "Evaluation@H2", "Evaluation@CO2").

Evaluation@H2

None	•		
Nr.:	Time:	Std. Name:	δ 2H

Reference/Blank				
Significant Peak Start [s]	105.000000	Significant Peak Stop [s]	125.000000	
Weight Percent [%]	4.900000			

Peak Detection@H2

Detection Parameter —	- N	Background Parameter
Start Slope [m∀/s]	0.2	Background Type Individual BGD
End Slope [mV/s]	0.4	History [s] 5
Peak Min Height [m∨]	50	
Peak Resolution [%]	20	Perform Background Detection 🔽
Max Peak Width [s]	180	H3 Factor H3 Factor 14.46411132812
Detection on Mass	2	Overwrite 🔲 0
Perform Peak Detection	N	
Perform Timeshift	V	Advanced Parameter >>

Printout@H2

Printout Template	\$	
Single	No Printout.IRW	
Sequence	No Printout.IRW	

10 – 9 **Thermo** Finnigan Issue 11/2001

HOW TO START A DUAL MEASUREMENT (4/7)

NOTE: Usually, the printout of results is performed not until the complete measurement has been finished. Therefore, it is recommended to choose "No Printout.irw" at "Printout@H2" tab, because at this moment, data acquisition is still running. Instead, printout options are defined at the end at "Printout@CO" tab.

Evaluation@CO

Ion Correction	п Туре:			
CO Santro	ock et al. 💌			
			-T	
Nr.:	Time:	Std. Name:	δ 13C	δ 18Ο
1	420.00	CO-Lab.Tank	0.000	9.050

Reference/Blank				
Significant Peak Start [s]	175.000000	Significant Peak Stop [s]	225.000000	1
Weight Percent [%]	26.220000			

Peak Detection@CO

eak Detection			-
Detection Parameter		Background Parameter	
Start Slope [mV/s]	0.2	Background Type Individual BGD	
End Slope [mV/s]	0.4	History [s] 5	
Peak Min Height [m∨]	50		
Peak Resolution [%]	20	Perform Background Detection	
Max Peak Width [s]	180	H3 Factor	_
		H3 Factor: 14.464111328125	
Detection on Mass	2	Overwrite 🔽 0	-
Perform Peak Detection	J		
Perform Timeshift	V	Advanced Parameter >>	

Printout @CO

Printout Template:	8	
Single	(HD+CO).IRW	<u> </u>
Sequence	Single Result.IRW	

10 - 10 **Thermo** Finnigan

Issue 11/2001

HOW TO START A DUAL MEASUREMENT (5/7)

- **3** Place a sample (e.g. 0.281 mg of benzoic acid) in the solid-autosampler.
- 4 Create a new Sequence
- **5** Define number of samples.

Sequence Properties	×
Number of Samples 3	×
OK	Cancel

6 Edit the Sequence list.

Start	Stop	Insert D	elete Options Auto Sort				
Line		Weight [mg]	Туре		Identifier 1	Method	
1	×	0.281	Sample	Sample		HD_CO.met	*
2	×	0.291	Sample	-	benzoic acid	HD_CO.met	•
3	×	0.274	Sample	•	benzoic acid	HD_CO.met	•

Peak Center Enable v to perform a Peak Center prior to measurement.

- *Weight* Type in sample mass [mg].
- *Type* Select kind of species (e.g. "Sample").
- *Identifier 1* Edit text to identify sample.
- *Method* Select IRMS Method (e.g. "HD_CO.met").
- 7 Press the *Start* button.

HOW TO START A DUAL MEASUREMENT (6/7)

8 Define Results Storage, Export and Printout parameters.

Results I⊄ Store	Auto Numerate Folder
Export WK1 File	© 1 File/Sequence C 1 File/Sample
ASCII export (*.csv)	1 File/Sequence C 1 File/Sample
Folder Name	Pre Post benzoic acid-1
File Name	Pre Post Acquisition
Printout	
No	
C Yes	
Properties	
Comment No Comment	Measure only Selection

9 Press *OK* to start Sequence Acquisition.

Events during Acquisition

- Peak Center procedure
- ➢ H₂ Reference Gas pulse activated at 20 s (duration: 20 s).
- > H_2 Reference Gas pulse activated at 60 s (duration: 20 s).
- Sample is dropped into reactor.
- Sample peak (H₂) appears approximately 15 s after reaction start.
- Sample peak (CO) appears approximately 100 s after reaction start (see page 8 – 16).
- CO Reference Gas pulse activated at 340 s (duration: 20 s).
- CO Reference Gas pulse activated at 400 s (duration: 20 s).
- Acquisition stops at 450 s.

10 – 12 **Thermo** Finnigan Issue 11/2001

HOW TO START A DUAL MEASUREMENT (7/7)

After finishing data acquisition the printer creates a data output sheet as defined by the selected Result Workshop template (*.irw). The Results will also be exported to a spreadsheet file, if activated.

C:\FINNIGAN\ISODAT NT\Global\User\Conflo II Interface\Results\Benzoic acid HD-CO.CF

H2	co Se	quence En	or Extended								
Nr.	Rt [s]	Width [s]	Ampl. 2 [mV]	Ampl. 3 [m∨]	BGD 2 [m∨]	BGD 3 [mV]	R 3/2	Area [∀s]	δ 2H [‰] vs. V-SMOW	AT% 2H [%]	Wt% [%]
1	29.3	25.4	5725	2053	637.6	38.5	0.000258	104.756	-169.779	0.012929	•
2*	69.1	27.3	5723	2051	637.0	38.4	0.000258	104.970	-169.895	0.012927	· ·
3	110.0	29.2	8695	3675	638.0	38.5	0.000288	45.597	-75.440	0.014398	4.9000000

The "H2" tab reveals information about the hydrogen related peaks.

H2	co	Sequence	Error Extende	d						
Nr.	Rt [s]	Width [s]	Ampl. 28 [mV]	BGD 28 [m∨]	BGD 29 [m∨]	Area [Vs]	δ 13C [‰] vs. PDB	δ 180 [‰] vs. V-SMOW	AT% 180 [%]	Wt% [%]
4	192.2	96.6	6055	218.8	128.1	80.238	12.284	29.314	0.205973	26.2200000
5	366.0	33.5	5232	225.0	135.1	99.372	0.571	9.649	0.202046	-
6*	426.1	36.2	5252	225.8	135.9	99.709	0.000	9.050	0.201926	-

The "CO" tab reveals information about the oxygen related peaks.

High Temperature Conversion

Elemental Analyzer (TC / EA)

99

TECHNICAL INFORMATION

INTRODUCTION

	<u>NOTE:</u>	This chapter is intended for trained personnel only. Thermo Finnigan denies liability for this Manual. Thermo Finnigan denies responsibility for failures in this Manual.
	<u>WARNING:</u>	Close standard gas (CO or H_2) to prevent health problems or an explosion!
	<u>WARNING:</u>	The reactor and GC column may be hot! Cool down prior to working on the system!
A	<u>WARNING:</u>	Switch OFF main power prior to working in order to prevent an electrical shock!

This section contains general remarks concerning the mechanical and electronical parts of the Service Manual. The TC / EA contains elaborate and expensive components. Therefore, only qualified and skilled personnel should perform servicing.

Important hints prior to performing servicing the TC/EA

- > Cool down reactor and GC to ambient temperature.
- > Switch main power supply "OFF" and remove cable from mains.
- > Turn carrier gas (He) and auxiliary gas to a minimum.
- > Be very careful when removing Autosampler installation platform/cover plates!
- When replacing fuses only use the correct type.
- It is recommended to use Thermo Finnigan spare parts only.

STRUCTURE OF THIS CHAPTER

Chapter 11 is area-structured (front panel, side panels, top, rear panel). The part numbers of the specific component parts are mainly written beside them. In addition, a spare part list provides an overview about the part numbers and the quantity of all components. The list is also area-structured so that the specific information easily can be found.

NOTE: Continuous improvement of the performance of our products may result in technical modifications without a notification to the user.

Issue 11/2001

SIDE PANEL (LEFT) OPEN

fig. S1

WARNING: Switch OFF main power while working in order to prevent an electrical shock!

^{11 – 3} **Thermo** Finnigan Issue 11/2001
TC / EA MANOMETER

fig. S 3

Pos.	Notation	Part Number
а	Peek tubing	# 0 70 41 30
1	Manometer 0 - 2,5 bar	# 0 52 43 91
2	Cap nut 1/16′′	# 0 52 36 10
3	Back ferrule 1/16"	# 0 52 32 10
4	Front ferrule 1/16	# 0 52 34 40
5	Elbow	# 0 49 31 90
6	Cap nut 1/8′′	# 0 52 15 00
7	Ferrule; teflon 1/8"	# 0 67 47 90
8	Coupling 1/8"	# 0 74 33 60

11 – 4 **Thermo** Finnigan Issue 11/2001

GASFLOW DIAGRAM

11 – 5 **Thermo** Finnigan Issue 11/2001

TC / EA T-PIECE AND AIR OPERATED VALVE

fig. S 4

Pos.	Notification	Part Number
1	Cap nut 1/16′′	# 0 52 36 10
2	Back ferrule 1/16"	# 0 52 32 10
3	Front ferrule 1/16	# 0 52 34 40
4	Cap nut 1/16′′	# 0 52 36 10
5	Cap nut 1/16′′	# 0 52 36 10
6	Helium: permanent in	
7	Helium: time controlled in	
8	Helium: permanent out	

9 Helium: time controlled out

11-6 **Thermo** Finnigan

REAR PANEL OPEN

- **1** Auxiliary gas (1% H₂ in He)
- 2 Standard gas (He)
- 3 Compressed air permanent (# 0674651)
- 4 Compressed air time controlled (# 0674651)

WARNING: Make sure the temperature has cooled down prior to working near the GC-column

WARNING:

Switch **OFF** main power while working in order to prevent an electrical shock!

11 – 7 **Thermo** Finnigan Issue 11/2001

11

SPARE PART LIST (1/2)

	Notation	Part Number	Qu	antity
1	Front panel			-
	Fan (12V)	# 1 12 10 40	1	piece
	Bottom reactor connection			-
	(nut, washer, o-ring (viton), screw	# 1 12 13 30	1 :	set
	Ceramic tube	# 1 12 13 20	1	piece
	Glassy carbon granulate	# 1 11 74 00	50	gram
	Glassy carbon reactor	# 1 12 13 10	1	piece
	Graphite crucible	# 1 11 73 30	10	pieces
	Graphite tube (big)	# 1 12 13 51	1	piece
	Graphite tube (thin)	# 1 12 13 50	1	piece
	Olive 1/16'' (Al)	# 1 12 11 30	5	bieces
	O-ring (viton)	# 1 12 11 20	4	oieces
	Quartz wool	# 1 08 77 70	1	piece
	Reactor holder	# 1 12 10 20	1	piece
	Screw	# 1 12 11 40	5	oieces
	Silver wool	# 1 11 74 30	1	piece
2	Side panel (right)			
	Air operated valve	# 1 06 85 10	1	piece
	Carrier gas safety switch	# 1 12 32 00	1	piece
	Combined terminal plate with switch	# 2 02 49 00	1	piece
	Fan	# 0 03 04 40	1	piece
	Fuse 1,6	# 2 01 17 80	2	pieces
	Fuse 6,3	# 2 01 18 40	2	pieces
	Mains filter (1X6 A; 230V)	# 2 02 41 90	1	piece
	Manometer	# 0 52 43 91	2	pieces
	-Back ferrule 1/16	# 0 52 32 10		
	-Cap nut 1/16´´	#		
	-Cap nut 1/8´´	# 0 52 15 00	2	pieces
	-Coupling 1/8	# 0 74 33 60	3	pieces
	-Elbow	# 0 49 31 90	6	pieces
	-Ferrule (teflon) 1/8 ⁷⁷	# 0 67 47 90	3	pieces
	-Front ferrule 1/16	# 0 52 34 40		
	Microprocessor temperature controller	# 0 67 45 50	2	pieces
	Peek tubing	# 0 70 41 30	1.1	m
	Plug (fan)	# 1 06 90 90	1	piece
	Safety switch	# 0 07 12 60	2	pieces
	Thermo element switch	# 1 06 77 70	1	piece
	T-piece	# 0 52 34 60	2	pieces

11 – 11 Thermo Finnigan

SPARE PART LIST (2/2)

	Notification	Part Number	Qu	ıantity
3	Side panel (left)			
	Transformer	# 2 03 28 80	1	piece
4	Rear panel			
	Compressed air	# 0 67 46 51	2	piece
	GC column "Molecular sieve 5A"	# 1 12 10 30	1	piece
	Heater	# 1 12 30 61	1	piece
	Thermoelement	# 1 06 13 90	1	piece
	Aperture (fan)	# 1 12 34 10	1	piece
5	Тор			
	O-ring (viton)	# 1 12 11 20	4	pieces
6	Additional			
	Gloves (small)	# 1 09 13 00	1	pair
	Gloves (medium)	# 1 09 12 90	1	pair

11 – 12 **Thermo** Finnigan Issue 11/2001

TROUBLESHOOTING

Symptom	Cause / Remedy
() power does not turn on	- mains cable not connected or fuse is defective
() power is on but heater does not operate	 safety device is operating leak present / insufficient He-flow
() Reactor heater switches at higher temperatures	 safety devices are operating autosampler installation platform too hot rear fan is defective or no sufficient He-flow thermo element switch is defective
() increasing the pressure regulator the He-flow does not increase gradually	- leak present
() CO, N2 peak width is too large / large peak tail / resolution between CO, N2 is too bad	 GC-column is contaminated heat it at 300°C / He-flow 90 ml/min for 12 hours graphite crucible is located too tight to glassy carbon reactor (file it carefully) graphite crucible has run over
() Background peak of N2, H2O, O, Ar is too high	- leak present - GC-column is contaminated (heat it as above)
() reactor heating limits at lower temperature than selected	- refer to section "Transformer"
() reactor heater does not work	 reactor heater is broken (refer to "Furnace") no He-flow fuse is defective
() heating action of reactor heater does not limit	 thermo element is defective solid state relays is defective microprocessor temperature contr. is defective
() heating action of GC column does not limit	 thermo element is defective microprocessor temperature contr. is defective

11 – 13 **Thermo** Finnigan

TRANSFORMER

The reactor heating stops at a lower temperature than selected, because the resistor value increases over time. Therefore, a higher voltage setting becomes necessary.

NOTE: A new reactor heater has a resistor of approximately 3.0 Ω . After six months of operation, the resistor is about 8 - 9 Ω .

For a new setting proceed as follows:

- Switch "OFF" main power supply.
- Remove the left side panel.
- Move wire (B) to the next higher value (see fig. S 6).

fig. S 6

WARNING: Switch OFF main power prior to working to prevent an electrical shock!

11 - 14 **Thermo** Finnigan

FURNACE (1/2)

- *a)* The heating action of the reactor does not limit because of a defective thermo element. Proceed as written below.
- b) The heater does not work because it is broken. Proceed as written below.
- 1 Cool down the system to ambient temperatures.
- 2 Switch "OFF" main power and unplug TC/EA from main power supply.
- 3 Close He gas and auxiliary gas supplies.
- 4 Remove the Autosampler.
- 5 Disconnect top and bottom connection and pull out the reactor carefully.
- 6 Unscrew the Autosampler installation platform (fig. 7).

a7) Unscrew the wires from the terminal block for light fixtures of thermo element.*a8)* Pull out the thermo element carefully.

- **NOTE:** Remember to contact the red marked wire with the plus pole when connecting the new thermo element (# 1 12 14 70).
- **NOTE:** If the heater is broken, it is recommended to replace the whole furnace.
 - **b7)** Unscrew the wires A D.
 - b8) Unscrew and remove the upper screws E.
 - *b9)* Unscrew the lower screws E *but do not remove them!* Otherwise, the furnace will fall down.
 - **b10)** Take the furnace out (by lifting).

fig. S 7

11 - 15

Connections

- new: varying, but mostly < 5 Ω (The value increases with time, depending on temperature).
- old: approximately 9 Ω .

Issue 11/2001

Thermo Finnigan

FURNACE (2/2)

Top view

fig. S 8

WARNING: If the furnace or parts of it are damaged, always protect it using the transportation lock to avoid more damage during transport!

The transportation lock will also be necessary for protecting the furnace during return transport.

11 – 16 **Thermo** Finnigan Issue 11/2001 Technical information contained in this publication is for reference purposes only and is subject to change without notice. Every effort has been made to supply complete and accurate information; however, Thermo Finnigan assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use of this manual or the information contained therein (even if this information is properly followed and problems still arise).

This publication is not part of the Agreement of Sale between Thermo Finnigan and the purchaser of a TC/EA system. In the event of any conflict between the provisions of this document and those contained in Thermo Finnigan's Terms and Conditions, the provisions of the Terms and Conditions shall govern.

Reference to System Configurations and Specifications supersede all previous information and are subject to revision without notice.

Thermo Finnigan

Australia,	Thermo Finnigan Australia Pty. Ltd, Unit 14, 38-46 South Street, P.O. Box 239, Rydalmere, N.S.W 2116 Phone +61-2-98989000
Belgium,	Thermo Finnigan BVBA, Groenenborgerlaan 84, 2610 Antwerp-Wilrijk Phone +32-3-8250670
France,	Thermo Finnigan France SA, Hightec Sud, 12 av. des Tropiques, ZA de Courtaboeuf - BP 141, 91944 Les ULIS Cedex Phone +33-1-69188810
Germany,	Thermo Finnigan GmbH, Boschring 12, 63329 Egelsbach Phone +49-6103-408-0
Italy,	Thermo Finnigan APG Italy, Strada Rivoltana, 20090 Rodano (MI) Phone +39-02-95059-1
Japan,	ThermoQuest K.K., Nishi-Shinjuku Toyokuni Bldg., 2-5-8 Hatsudai, Shibuya-Ku, Tokyo 151-0061 Phone +81-3-3372-3001
The Netherlands,	Thermo Finnigan BV, Druivenstraat 33, 4816 KB Breda Phone +31-76-5878722
People's Republic of China,	Thermo Finnigan Beijing Rep. Office, Room 912, Ping-an Mansion, No. 23, Finance Street, Beijing 100032 Phone +86-10-66210839, -846
Spain,	Thermo Finnigan S.A., Avenida de Valdelaparra 27, Edificio Alcor, planta 2, 28108 Alcobendas (Madrid) Phone +34-91-6574930
Sweden,	Thermo Finnigan AB, Pyramidbacken 3, 141 75 Kungens Kurva Phone +46-8-5564 6800
United Kingdom,	Thermo Finnigan Limited, Stafford House, Boundary Park, Boundary Way, Hemel Hempstead, Herfordshire HP2 7GE Phone +44-1442-233555
U.S.A.,	Thermo Finnigan LLC, 355 River Oaks Parkway, San Jose, CA 95134 Phone +1-408-965-6800

Worldwide represented by

In countries not contained in the above list Thermo Finnigan is represented by renowned instrument distributors. Information and specifications herein are subject to revision without prior notice. Availability of components and options subject to verification by local representatives.

MANUAL HISTORY

November 2001 Rev. 0 - Issue 11/2001

For additional information, please check our home page: http://www.thermofinniganmat.de

Thermo Finnigan MAT GmbH is a Thermo Electron business. Copyright 2001[©] by Thermo Finnigan MAT GmbH. All rights reserved. Printed in Germany