
PHYS 391 
Day 16

• Lab 4 tasks

• Fourier Series and Transform

• Sampling Basics



Lab 4

• 4.5 - Poisson Statistics


• 4.6 - Gaussian Statistics


• 4.7 - Inverse Square Law


• 4.8 - Attenuation Length

Don’t forget to describe (briefly) the data taking conditions

and also to provide some analysis of your results



4.5 Poisson Stats
• Taking data with µ ~ 1


• Make histogram of events per interval


• Overlay with Poisson function with same µ


• Find background rate (used for remaining sections)

Challenge is really 
just making this plot…

µ = 1.2



4.6 Gaussian Stats
• Taking data with µ ~ 10


• Make histogram of events per interval


• Find mean and standard deviation


• Is σ ~ √µ ?  Probably worth finding error on σ here…

Don’t need to 
overlay Gaussian



4.7 Inverse Square Law
• Take data at different distances 


• Subtract background and correctly propagate errors to get signal rate


• Expect R(r) = R0 / r2  -> want to fit to R0 / r n, is n = 2?


• Linearize this equation and perform a linear fit to your linearized data


• Don’t need to include errors in the fit, but if you do, be careful with the 
errors on the linearized data…


• Need an uncertainty on n from your fit - present result with sig. figures…


• Discuss if there is evidence of deviations (particularly at short distances…)



4.8 Attenuation Length
• Take data at fixed distance, but varying thickness of Aluminum x 


• Subtract background and correctly propagate errors to get signal rate


• Expect R(x) = R0 e -x/λ -> fit for λ


• Linearize this equation and perform a linear fit to your linearized data


• Best to include errors in the fit, but must use correct uncertainty on ln(R), 
ask for help, or if you don’t think you can to this correctly, use an unweighted fit…


• Need an uncertainty on λ from your fit


• Convert to λρ in units of g/cm2 including error - present result with sig. figures


• From magnitude, is this more likely α, β, or γ radiation? 



Fourier Transforms
Fourier Transform Notes:   

https://pages.uoregon.edu/torrence/391/fftnotes.pdf

Note: I will not ask you to calculate analytic Fourier Transforms…

https://pages.uoregon.edu/torrence/391/fftnotes.pdf
https://pages.uoregon.edu/torrence/391/fftnotes.pdf


Complex Representation
• Can re-write Fourier Series as

f(x) =
+1X

n=�1
cn e

inx

where
where we now have complex coe�cients cn with the index n having both positive and negative
values. The coe�cients can be seen to follow

cn =

(
1
2(an � ibn), n > 0,
1
2(an + ibn), n < 0,

(8)

while c0 =
1
2a0. Clearly the positive and negative coe�cients are not independent, but rather

are complex conjugates of each other as cn = c⇤�n. Now the real part of cn is related to the
even part of the function f(x), while the imaginary part of cn is related to the odd part.

3 Extended Fourier Series

So far we have only discussed the application of Equation 1 to some arbitrary function on
the range (�⇡,+⇡). Now we want to look at extending this to other situations.

3.1 Periodic functions

Nothing in the definition of Equation 1 requires the function f(x) to be periodic. In fact,
in our solution for the step function it was never specified what happened to the function
beyond the range (�⇡,+⇡). It should be clear, however, that since Equation 1 is formed
from sine and cosine functions which are periodic with period 2⇡, the resulting Fourier series
found on the defined range is also periodic outside that range with period 2⇡. As such, to
represent a continuously periodic function, one simply needs to find the Fourier coe�cients
for a single period, and the solution with automatically also represent the solution over the
entire range of x. This technique can clearly not be used to represent a function with a
period greater than 2⇡, however.

3.2 Change of Interval

To apply equation 1 to a periodic function does require the function f(x) to be periodic over
an interval with length 2⇡. Clearly a simple change of variables can be applied to create
instead a transform applicable over a range 2L. By replacing n with the scaled quantity n⇡

L ,
any range can be accommodated. The Fourier series, then, is written as
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a0
2

+
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with coe�cients determined by

an =
1

L

Z +L

�L

f(x) cos
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dx (10)

bn =
1

L

Z +L

�L

f(x) sin
n⇡x

L
dx. (11)

In this formulation it is clear that the quantity n⇡
L is a measure of angular frequency, which

could be a spatial frequency when applied to some function of position f(x) or a temporal
frequency when applied to some function of time f(t).

5

More compact notation, potentially more confusing

Closer to how the Fourier Transform is usually written



Fourier Transform
• Extending range from [-π, +π] to [-∞, +∞] changes:


• sum ⇒ integral


• cn with spacing (π/L) ⇒ continuous function c(ω) = f(ω)ˆof the continuous Fourier integral described by Equation 15. More specifically, the Fourier
transform is the operation for finding the complex Fourier coe�cients in the exponential
form. The Fourier transform of the function f(x) is then defined as

f̂(!) ⌘
Z +1

�1
f(x)e�i!x dx, (16)

such that the inverse Fourier transform, which is equivalent to the Fourier integral from last
section, is given by

f(x) =
1

2⇡

Z +1

�1
f̂(!)ei!x d!. (17)

The factor of 1
2⇡ here is a choice of convention, and some definitions place an equal factor of

1p
2⇡

in front of both the Fourier and inverse Fourier transforms.

Again the transformed function f̂(!) is functionally the same thing as the Fourier co-
e�cients c(!) from Equation 15. This function is complex, and again the real part of this
function represents the amplitude (as a function of frequency) of the even frequency compo-
nents while the imaginary part represents the amplitude of the odd frequency components.

In physics, one often applies the Fourier transform to a function of time f(t) to produce
the transformed function f̂(!) as a function of natural frequency. As no information is gained
or lost in this transformation (as can be seen from the ability to recover the original function
through the inverse Fourier transform), the functions f(t) and f̂(!) are two equivalent ways
of looking at the same information. These are typically called the time domain and frequency
domain respectively.

5.1 Fourier properties

While we aren’t really going to use much of this, there are a few key mathematical properties
of the Fourier transform which are useful to understand.

5.1.1 Linearity

The Fourier transform is linear in the sense that for any complex numbers ↵ and �, the
function

h(x) = ↵f(x) + �g(x),

leads to a Fourier transform given by

ĥ(!) = ↵f̂(!) + �ĝ(!).

5.1.2 Translation

For any real number x0 and function h(x) = f(x� x0), the Fourier transform is given by

ĥ(!) = e�i!x0 f̂(!),

where f̂(!) means the Fourier transform of the function f(x). This shows that the di↵erence
between the Fourier transform of a sine or cosine function is simply a constant complex factor
(phase shift).
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[Fourier Transform]

of the continuous Fourier integral described by Equation 15. More specifically, the Fourier
transform is the operation for finding the complex Fourier coe�cients in the exponential
form. The Fourier transform of the function f(x) is then defined as

f̂(!) ⌘
Z +1

�1
f(x)e�i!x dx, (16)

such that the inverse Fourier transform, which is equivalent to the Fourier integral from last
section, is given by

f(x) =
1

2⇡
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The factor of 1
2⇡ here is a choice of convention, and some definitions place an equal factor of

1p
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in front of both the Fourier and inverse Fourier transforms.

Again the transformed function f̂(!) is functionally the same thing as the Fourier co-
e�cients c(!) from Equation 15. This function is complex, and again the real part of this
function represents the amplitude (as a function of frequency) of the even frequency compo-
nents while the imaginary part represents the amplitude of the odd frequency components.

In physics, one often applies the Fourier transform to a function of time f(t) to produce
the transformed function f̂(!) as a function of natural frequency. As no information is gained
or lost in this transformation (as can be seen from the ability to recover the original function
through the inverse Fourier transform), the functions f(t) and f̂(!) are two equivalent ways
of looking at the same information. These are typically called the time domain and frequency
domain respectively.

5.1 Fourier properties

While we aren’t really going to use much of this, there are a few key mathematical properties
of the Fourier transform which are useful to understand.

5.1.1 Linearity

The Fourier transform is linear in the sense that for any complex numbers ↵ and �, the
function

h(x) = ↵f(x) + �g(x),

leads to a Fourier transform given by

ĥ(!) = ↵f̂(!) + �ĝ(!).

5.1.2 Translation

For any real number x0 and function h(x) = f(x� x0), the Fourier transform is given by

ĥ(!) = e�i!x0 f̂(!),

where f̂(!) means the Fourier transform of the function f(x). This shows that the di↵erence
between the Fourier transform of a sine or cosine function is simply a constant complex factor
(phase shift).
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[Inv. Fourier Transform]



Simple Examples
• Will discuss code next week

f(t) = cos[2(⇡t)] Purely Even



Simple Examples
• Will discuss code next week

f(t) = cos[2(⇡t)] Complex form



Simple Examples
• Will discuss code next week

Complex formf(t) = sin[2(⇡t)]



Simple Examples
• What if I add a constant?

f(t) = sin[2(⇡t)] + 1



Simple Examples
• What if I add a constant?

f(t) = sin[2(⇡t)] + 1



Simple Examples
• What if I add a constant?

f(t) = sin[2(⇡t)] + 1



Simple Examples
• What if I add a second function?

f(t) = sin[2(⇡t)] + cos[3(⇡t)] + 1



Simple Examples
• What if I add a second function?

f(t) = sin[2(⇡t)] + cos[3(⇡t)] + 1



Match the Waveform
1) 2) 3)

A) B) C)



Match the Waveform
1)

A) B) C)

What features help you here?

f(t) = sin2[2(⇡t)]



Match the Waveform
2)

A) B) C)

f(t) = cos[2(⇡t)] cos[3(⇡t)]

“Beat Frequency”



Match the Waveform
3)

A) B) C)

f(t) = sin[2.5(⇡t)]



Step Function


