PHYS 391 Day 16

- Lab 4 tasks
- Fourier Series and Transform
- Sampling Basics

Lab 4

- 4.5 - Poisson Statistics
- 4.6-Gaussian Statistics
- 4.7 - Inverse Square Law
- 4.8 - Attenuation Length

Don't forget to describe (briefly) the data taking conditions and also to provide some analysis of your results

4.5 Poisson Stats

- Taking data with $\mu \sim 1$
- Make histogram of events per interval
- Overlay with Poisson function with same μ
- Find background rate (used for remaining sections)

Challenge is really just making this plot...

4.6 Gaussian Stats

- Taking data with $\mu \sim 10$
- Make histogram of events per interval
- Find mean and standard deviation
- Is $\sigma \sim \sqrt{ } \mu$? Probably worth finding error on σ here...

4.7 Inverse Square Law

- Take data at different distances
- Subtract background and correctly propagate errors to get signal rate
- Expect $R(r)=R_{0} / r^{2}->$ want to fit to R_{0} / r^{n}, is $n=2$?
- Linearize this equation and perform a linear fit to your linearized data
- Don't need to include errors in the fit, but if you do, be careful with the errors on the linearized data...
- Need an uncertainty on n from your fit - present result with sig. figures...
- Discuss if there is evidence of deviations (particularly at short distances...)

4.8 Attenuation Length

- Take data at fixed distance, but varying thickness of Aluminum x
- Subtract background and correctly propagate errors to get signal rate
- Expect $R(x)=R_{0} e^{-x / \lambda}->$ fit for λ
- Linearize this equation and perform a linear fit to your linearized data
- Best to include errors in the fit, but must use correct uncertainty on $\ln (\mathrm{R})$, ask for help, or if you don't think you can to this correctly, use an unweighted fit...
- Need an uncertainty on λ from your fit
- Convert to $\lambda \rho$ in units of $\mathrm{g} / \mathrm{cm}^{2}$ including error - present result with sig. figures
- From magnitude, is this more likely a, β, or γ radiation?

Fourier Transforms

Fourier Transform Notes:
https://pages.uoregon.edu/torrence/391/fftnotes.pdf

Note: I will not ask you to calculate analytic Fourier Transforms...

Complex Representation

- Can re-write Fourier Series as

$$
f(x)=\sum_{n=-\infty}^{+\infty} c_{n} e^{i n x}
$$

where

$$
c_{n}= \begin{cases}\frac{1}{2}\left(a_{n}-i b_{n}\right), & n>0, \\ \frac{1}{2}\left(a_{n}+i b_{n}\right), & n<0,\end{cases}
$$

More compact notation, potentially more confusing Closer to how the Fourier Transform is usually written

Fourier Transform

- Extending range from $[-\pi,+\pi]$ to $[-\infty,+\infty]$ changes:
- sum \Rightarrow integral
- C_{n} with spacing $(\pi / \mathrm{L}) \Rightarrow$ continuous function $\mathrm{c}(\omega)=\hat{\mathrm{f}}(\omega)$

$$
\begin{array}{ll}
\hat{f}(\omega) \equiv \int_{-\infty}^{+\infty} f(x) e^{-i \omega x} d x, & \text { [Fourier Transform] } \\
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \hat{f}(\omega) e^{i \omega x} d \omega . & {[\text { [nv. Fourier Transform] }}
\end{array}
$$

Simple Examples

- Will discuss code next week

$$
f(t)=\cos [2(\pi t)]
$$

Purely Even

Simple Examples

- Will discuss code next week

Complex form

Simple Examples

- Will discuss code next week

$$
f(t)=\sin [2(\pi t)]
$$

Complex form

Simple Examples

- What if I add a constant?

Simple Examples

- What if I add a constant?

Simple Examples

- What if I add a constant?

$$
f(t)=\sin [2(\pi t)]+1
$$

Simple Examples

- What if I add a second function?

$$
f(t)=\sin [2(\pi t)]+\cos [3(\pi t)]+1
$$

Simple Examples

- What if I add a second function?

$$
f(t)=\sin [2(\pi t)]+\cos [3(\pi t)]+1
$$

Match the Waveform

Match the Waveform

$$
f(t)=\sin ^{2}[2(\pi t)]
$$

What features help you here?

Match the Waveform

$$
f(t)=\cos [2(\pi t)] \cos [3(\pi t)]
$$

"Beat Frequency"

Match the Waveform

$$
f(t)=\sin [2.5(\pi t)]
$$

Step Function

