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Decomposing Leftovers: Event, Path, and Site Residuals

for a Small-Magnitude Anza Region GMPE

by Valerie Sahakian, Annemarie Baltay, Tom Hanks, Janine Buehler,
Frank Vernon, Debi Kilb, and Norman Abrahamson

Abstract Ground-motion prediction equations (GMPEs) are critical elements of
probabilistic seismic hazard analysis (PSHA), as well as for other applications of
ground motions. To isolate the path component for the purpose of building nonergodic
GMPEs, we compute a regional GMPE using a large dataset of peak ground accel-
erations (PGAs) from small-magnitude earthquakes (0:5 ≤ M ≤ 4:5 with >10; 000
events, yielding ∼120; 000 recordings) that occurred in 2013 centered around the
ANZA seismic network (hypocentral distances ≤180 km) in southern California.
We examine two separate methods of obtaining residuals from the observed and pre-
dicted ground motions: a pooled ordinary least-squares model and a mixed-effects
maximum-likelihood model. Whereas the former is often used by the broader seis-
mological community, the latter is widely used by the ground-motion and engineering
seismology community. We confirm that mixed-effects models are the preferred and
most statistically robust method to obtain event, path, and site residuals and discuss
the reasoning behind this. Our results show that these methods yield different con-
sequences for the uncertainty of the residuals, particularly for the event residuals. Fi-
nally, our results show no correlation (correlation coefficient [CC] <0:03) between
site residuals and the classic site-characterization term VS30, the time-averaged shear-
wave velocity in the top 30 m at a site. We propose that this is due to the relative
homogeneity of the site response in the region and perhaps due to shortcomings
in the formulation of VS30 and suggest applying the provided PGA site correction
terms to future ground-motion studies for increased accuracy.

Electronic Supplement: Peak ground acceleration (PGA) dataset.

Introduction

There are many dimensions to earthquake hazard reduc-
tion and risk mitigation, and accurately estimating earth-
quake ground motion is one of the most important. For the
engineering community, ground-motion prediction equations
(GMPEs) are the principal means for estimating ground
motion. In addition to hazard mapping applications and site-
specific studies for building design, GMPEs are used in a
variety of seismological problems, including earthquake
early warning applications, rapid earthquake response (e.g.,
ShakeMap), and validation of physics-based models of
ground-motion simulation. Because they are almost entirely
empirical, even the most complete GMPEs embody consid-
erable uncertainty of both the epistemic and aleatory types.

In particular, global or large-scale GMPEs are often less
accurate and precise when applied on a local or regional scale.
These discrepancies lead to large uncertainties or standard de-
viations in the median ground-motion model. Ground-motion
uncertainties have plagued many seismological studies since

the very early days of local magnitude (Richter, 1935). Large
uncertainties could result in the overprediction of high ground
motions at low probabilities of exceedance (Bommer and
Abrahamson, 2006; Hanks et al., 2013; Stafford, 2014; Baltay
et al., 2017) and reduce the efficacy of the GMPE as an
empirical baseline estimate for validation of ground-motion
simulations or regional seismological studies. Nonergodic
GMPEs or path-specific GMPEs can help ameliorate these
problems (Anderson and Brune, 1999; Al Atik et al., 2010).
These models acknowledge that ground-motion distributions
are not the same in time as in space by providing a ground-
motion distribution for every path of interest as opposed to the
same distribution for all possible paths.

To work toward fully nonergodic GMPEs that are valid
for moderate- to large-magnitude events, we first need to
study path effects that arise from small-magnitude events
because this magnitude range contains the large volume of
seismic data required for validating any physical relationships.
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One way to test the usefulness of these events is empirical, in
which the observed path effects for small earthquakes can be
used in extrapolations to larger magnitude earthquakes.
Another approach is to validate the path effects observed in
3D numerical simulations of earthquake rupture.

This article provides the basis for the first approach
listed above. To study path effects from small-magnitude
events, the path component of residuals must be isolated and
compared against various physical properties or processes.
Similar studies have been conducted with respect to source
properties (Kotha et al., 2016; Ameri et al., 2017; Baltay
et al., 2017; Bindi et al., 2017; Oth et al., 2017). These stud-
ies examined how observed event terms or uncertainties can
be correlated with independently determined stress-drop es-
timates, such that this information could put into GMPEs a
priori to improve their predictive power (e.g., Baltay et al.,
2017). With respect to path effects, path residuals from an
empirical GMPE decomposition may directly correlate with
a seismic-velocity structure (or other earth material prop-
erty). Path-specific GMPEs may then include information
on the underlying velocity structure as physical predictive
input parameters.

The goal of our larger study is to do just this. Developing
an unbiased reference GMPE for these small-magnitude data
is a first requirement because GMPEs developed from other
datasets will not be sufficient to appropriately describe this
region and magnitude range. Furthermore, to correlate path
residuals with a velocity or other earth-material structure re-
quires decomposition of the total residuals and uncertainty of
a GMPE into the individual contributions arising from the
residuals for the source (event), path, and site. It is difficult
to separate these components, in particular for imbalanced
datasets. The method with which these residuals and uncer-
tainties are decomposed can also affect the results and is
discussed in this article.

We begin by developing a regional PGAGMPE for small
to moderate magnitudes (0:5 ≤ M ≤ 4:5) in the southern
California region using a dense seismic network and a large
catalog of earthquake waveform recordings. The zero-biased,
small-magnitude GMPE is necessary as a reference model to
remove average ground-motion scaling and isolate path
effects. Additionally, it provides a model for regional, seismo-
logical studies and is important in constraining the hazard
from small- to moderate-magnitude events (Chiou et al.,
2010; Beauval et al., 2012; Atkinson and Morrison, 2014; At-
kinson, 2015; Baltay et al., 2017). Furthermore, because
small-magnitude events in the southern California region are
so often studied, findings from this GMPE study can be used
by seismologists to better constrain or understand their own
analysis (e.g., Kilb et al., 2012; Trugman and Shearer, 2017).
In a companion study, we use this GMPE and the multitude of
small-magnitude recordings, together with high-resolution
seismic-velocity models, to demonstrate a causal connection
between the empirical GMPE path residuals and the velocity
model (Sahakian et al., 2016).

Then, we use this GMPE to illustrate two methods
of obtaining residuals and event, path, and site terms for
the GMPE: the pooled ordinary least-squares (POLS) and
mixed-effects maximum-likelihood estimation (MLE) ap-
proach. Using these two different methods, we explore some
of the implications of each method on the event, site, and in
particular path terms, as well as the correlation and inclusion
of regional parameters or physical processes into GMPEs.
The differences between and implications of these methods
have been explored by Stafford (2014) and Kotha et al.
(2017); in this article, we bring these matters to the broader
seismological community beyond engineering seismology.

Methods: Data, GMPE Development,
and Residual Determination

The southern California region is well positioned for the
purposes of this study because it exhibits high levels of
seismic activity (Hardebeck and Hauksson, 2001), with dense
continuous seismic networks that have been in place for
decades (Berger et al., 1984; Vernon, 1989). In 2013 alone,
more than 10,000 events in southern California were recorded
and cataloged (Fig. 1). This allows for the formation of a large
database of seismic recordings, which we can use to both test
the development of regional GMPEs and study the effects of
various methods for computing residuals. This region has also
been studied extensively with respect to physical properties
and processes that may affect ground motions, including
regional velocity models (Allam et al., 2014; Fang et al.,
2016), attenuation structure (Hauksson and Shearer, 2006),
and geologic structure (Plesch et al., 2007; Shaw et al., 2015)
as well as models of fault-slip rate (Bennett et al., 1996) and
models of ground motion (Kurzon et al., 2014).

When using GMPE residuals to glean information about
regional seismological characteristics and phenomena, the
estimates of the event, path, and site residuals (and their vari-
ability) should be as accurate as possible. Several possible stat-
istical methods are used to obtain estimates of GMPE residuals.
A widely used seismological framework for obtaining these
(e.g., Baltay et al., 2017) is the POLS method, which computes
the mean of all GMPE residuals for each event and then for
each site. This POLS regression method implies that the data
and residuals for various events and sites are independent and
represented by a Gaussian distribution (Greene, 2012); that is,
nearby sites will demonstrate completely independent ground-
motion variability. In contrast, a mixed-effects MLE (or
restricted maximum-likelihood [REML]) approach, widely
used by earthquake engineers and ground-motion seismolo-
gists, computes the residuals simultaneously with the under-
lying variances of the event and site residuals. This method
assumes that the data and uncertainties are correlated (e.g.,
Abrahamson and Youngs, 1992; i.e., all recordings of a
particular event will be correlated, as will recordings at a sin-
gle site) and solves for the covariance between the data and
uncertainties. Both methods contain assumptions and implica-
tions affecting the resulting residuals and their covariances.
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Data

Our dataset contains more than
120,000 recordings of earthquakes re-
corded in the year 2013. It is composed
of more than 10,000 events recorded on
a minimum of 5 stations, within a 78-sta-
tion array. The majority of events in our
catalog are small magnitude 1 < M < 3

with the largest M ∼ 4:5 and recorded at
distances (Rrup, closest distance to rupture)
of Rrup < 180 km (Figs. 2 and 3). No events
larger thanM 4.5 are in the database because
none occurred during the year 2013, and very
few of the events areM > 3. The 78 stations
in this dataset are from the ANZA (AZ), San
Jacinto Fault Zone (SJFZ), Caltech (CI), UC
Santa Barbara (UCSB), and Plate Boundary
Observatory (PBO) networks. The majority
of seismic instruments in this study are
STS-2s with Quanterra digitizers. VS30 is in-
cluded as a measure of site effects. VS30 is
the time-averaged shear-wave velocity in the
top 30 m of the Earth’s surface and is a
proxy for site amplification. Site VS30 values
(Fig. 2) have been measured at 32 of the 78
stations (Yong et al., 2016), and when mea-
sured values are not available, we use esti-
mated values at the remaining 46 stations via
a terrain-based proxy method (Yong et al.,
2012). All waveforms are high-pass filtered
at 0.5 Hz to avoid noise contamination but
still preserve peak amplitudes for events in
our magnitude range. All waveforms have
either analyst-selected P- and S-wave arriv-
als or theoretically computed arrivals (Ross
et al., 2016), with a 30-s time window after
the P-wave arrival used for the maximum
amplitude measurements. Peak ground ac-
celeration (PGA) is computed as the geo-
metric average of the peak acceleration
from the time series on the two horizontal
channels at each station; RotD50 could be
used instead of the geometric mean to re-
duce uncertainty; however, previous studies
found little reduction using this parameter
(Beyer and Bommer, 2006; Boore, 2006).
Finally, the signal-to-noise ratio is computed
as the PGA in the signal window divided by
the maximum amplitude in the noise window
before theP-wave arrival. In this study, we do
not include peak ground velocity (PGV) or
effective amplitude spectra (EAS, which is
the quadratic mean of the Fourier amplitude
spectrum of the two horizontal components;
Bayless and Abrahamson, 2018).

(a) (b)

(c) (d)

Figure 2. (a) Histogram of moment magnitude distribution of unique events in the
dataset; the largest event in our database isM 4.5. (b) Histogram of Rrup distances for all
recording in the dataset. (c) Histogram of event depths for each earthquake in the data-
base. (d) Histogram of the VS30 distribution for the 78 stations in this study, all stations
with measured VS30, and all stations with a proxy VS30. The color version of this figure is
available only in the electronic edition.

Figure 1. Regional map of our study region, including >10; 000 small-magnitude
(0:5 ≤ M ≤ 4:5) events (dots) and seismic stations (triangles). U.S. Geological Survey
mapped Holocene–Latest Pleistocene faults are shown as black lines. The star in the
inset shows the geographic location of the main map. The color version of this figure
is available only in the electronic edition.
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GMPE Development and Residual Computation

The functional form we use here is a simplified version
of Abrahamson et al. (2014) with either six terms:

EQ-TARGET;temp:intralink-;df1;55;443

f�M;Rrup� � a1 � a2M � a3�8:5 −M�2 � a4 ln�R�
�a5Rrup � a6 ln�VS30

Vref
�; �1�

or with five terms, omitting the VS30 term:

EQ-TARGET;temp:intralink-;df2;55;376

f�M;Rrup� � a1 � a2M � a3�8:5 −M�2
�a4 ln�R� � a5Rrup;

�2�

in which

EQ-TARGET;temp:intralink-;df3;55;307 R �
��������������������
R2
rup � c2

q
: �3�

The regressed ground-motion intensity is ln�PGA�, in which
PGA is peak ground acceleration in units of g. Rrup is equiv-
alent to the hypocentral distance for these small earthquakes,
and c is the finite-fault dimension factor, taken here to be a
constant 4.5 (Abrahamson et al., 2014). The first term a1 is
simply an overall constant or intercept; a2 and a3 account for
the magnitude dependence of PGA; a4 is the geometric
spreading coefficient; a5 is the anelastic attenuation term;
and a6 is the linear VS30 parameter. VS30 in this region is fairly
homogeneous (with the majority of stations between ∼300
and 700 m=s). Because of this homogeneity and the fact that
nonlinear effects are not of concern for such small-magnitude
events, we consider only a linear VS30 relation.

The observed ground motions may be written as a com-
bination of the GMPE prediction f�M;Rrup�ij, and a total
residual δij, for any event i and station j:

EQ-TARGET;temp:intralink-;df4;313;733yij � f�M;Rrup�ij � δij: �4�

The total residual can be decomposed into components that
represent contributions from the source (event), path, and
site. It is traditionally considered to first be decomposed into
δEi, the average event-term (also called between-event or
interevent) residual, and the within-event (or intraevent)
residual δWij, for the recording of event i at station j:

EQ-TARGET;temp:intralink-;df5;313;636δij � δEi � δWij: �5�

The within-event residual is a combination of a site-term
residual δSj at station j, path-term residual δPij, and the
remaining random residual for recording of earthquake i
at station j, δW0

ij:

EQ-TARGET;temp:intralink-;df6;313;553δWij � δSj � δPij � δW0
ij: �6�

Because we cannot separate out the path residual from
random residual δW0

ij, we combine them to be δWSij and
hereafter call this the path term or path residual, using the
same notation as Baltay et al. (2017).

The standard deviation of the total residual
st:dev:�δij� � σ can itself be decomposed as

EQ-TARGET;temp:intralink-;df7;313;450 σ2 � τ2 � ϕ2
S � ϕ2

SS ; �7�

in which τ is the standard deviation of the event terms for
all unique events; ϕS is the standard deviation of site terms
for all unique sites; and ϕSS the single-station standard
deviation, a combination of the path and random uncertainty.
In the future, we will ideally move toward decomposing this
into a path standard deviation and a remaining component.

The POLS method of GMPE development first inverts
for the coefficients in equation (1) or (2) with a least-squares
inversion, with no grouping or weighting of the events or
stations (pooling them all together), and then decomposes
the residuals into event, path, and site terms (see Wang
and Jordan, 2014; Baltay et al., 2017, for details). The event
term δEi is calculated as the mean of all δij per event (in
which ni is the number of stations recording event i):

EQ-TARGET;temp:intralink-;df8;313;248δEi POLS � 1

ni

Xni
j�1

δij: �8�

The within-event residual δWij is calculated as δWij �
δij − δEi and δSj is then the mean of δWij at any one station
(in which mj is the number of events recorded on station j):

EQ-TARGET;temp:intralink-;df9;313;158δSj POLS �
1

mj

Xmj

i�1

�δij − δEi�: �9�

The path term is assumed to be the remaining residual δWSij,
which is in fact some combination of path and aleatory
residuals.

Figure 3. Magnitude versus distance for this dataset. Record-
ings are shaded by log10 PGA (peak ground acceleration). The color
version of this figure is available only in the electronic edition.
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The disadvantage of the POLS method is that the rela-
tive uncertainties of the event and site and the covariance of
the data are not taken into consideration in the GMPE com-
putation (Stafford, 2014). For example, every database with a
certain population of events and stations will present its own
unique associated uncertainties (τ, ϕS, ϕSS) and biases, dif-
ferent from another data population. Without accounting
for the trade-offs of these uncertainties during the step of
inverting for the GMPE coefficients, the coefficients may ac-
quire some of the database’s unique event and site uncertainty,
and the event and site terms themselves will not reflect how
well constrained (or well recorded) each individual event and
site is. In addition, the nonweighted, grouped least-squares
regression (and ensuing residuals) assumes that the individual
data and their uncertainties are independent, but they clearly
are not (e.g., recordings at the same site should be correlated
as they share similar site effects).

Alternatively, an MLE or REML mixed-effects model
will allow both the GMPE coefficients and event and site
terms to be inverted for simultaneously, as well as all their
respective uncertainties. In this model, all of the GMPE co-
efficients are considered fixed effects because their relation-
ship to the predictive parameter is constant regardless of the
selected population of data. The selected populations of
events and sites, however, will affect the uncertainty of the
model differently with every population. In this case, the
event and site terms are then considered random effects. In
a mixed-effects model, the functional form then becomes

EQ-TARGET;temp:intralink-;df10;55;397 ln yij � f�M;Rrup�ij � δEi � δSj � δWSij; �10�

in which the fixed effects for a recording of the ith earth-
quake and jth station are the coefficients a1–a5 (or a6), and
the random effects δEi and δSj are the event term and site
term, respectively. The remaining residual per recording for
a mixed-effects model is then δWSij, which is a combination
of the path term δPij and aleatory component

EQ-TARGET;temp:intralink-;df11;55;291

δWSij � δPij � δW0
ij ; �11�

in which δPij is the path term for the ith earthquake and jth
station and δW0

ij is the random component of the residuals. In
the mixed-effects MLE approach, as in the POLS method,
what we hereafter call the path-term residual is

EQ-TARGET;temp:intralink-;df12;55;208δWSij � ln yij − f�M;Rrup�ij − δEi − δSj: �12�

Random effects require grouping factors, so δEi is grouped
by event number and δSj by station name or number. With an
adequate grouping factor, the path term δWSij could also be
included as a random effect (i.e., Walling, 2009), but for this
study, we do not explore a potential grouping or classifica-
tion method for the paths. We also do not explore grouping
events by source location (e.g., for repeating events, position
along the fault), but this would be useful for investigating
possible source effects in a region. Additionally, it is possible

to allow for interaction among grouping factors; however,
we do not because events should not depend on sites. The
fixed and random effects are solved for with a maximum-
likelihood algorithm using the R lme4 package, and the
values of each event and site term are determined through
this algorithm with the best linear unbiased predictors
method (Pinheiro and Bates, 2000; Bates et al., 2015).

Results

We apply both of the methods described to our data
and compute models and residuals for functional forms with
and without the VS30 term (5 and 6 term models) to explore
the relevancy of the VS30 term with this database. In several
instances, the coefficients obtained through a purely mixed-
effects inversion were unrealistic in nature, in particular for
the geometrical spreading and intrinsic attenuation terms
(a4 and a5), because these terms are highly correlated. In these
instances, we explored models with certain coefficients
prescribed and the remaining terms inverted for as fixed
effects.

The coefficients for each of our models can be found in
Table 1, along with a variance reduction (VR) for goodness
of fit (equation 10; Melgar et al., 2012). The uncertainties
(standard deviations) for total residuals, event, path, and site
terms as described earlier are listed in Table 2. The results are
partitioned into two categories: (1) models with six coeffi-
cients (including a VS30 term) and (2) models with only five
coefficients (no VS30 term).

Overview

From a seismological perspective, we expect the derived
parameters to be consistent with the underlying physics. For
these small-magnitude events (M < 3), the scaling of log10
PGA should be M ∼ 1:5 because of saturation of the appar-
ent corner frequency (Hanks and Boore, 1984; Baltay and
Hanks, 2014), and the slope with M should decrease with
increasing magnitude. Geometrical spreading in a homo-
geneous elastic half-space is expected to be equivalent to
1=R, equating to a value of −1:0 for a4, and a5 should be
related to the anelastic attenuation parameter Q approxi-
mated as a5 � −πf

Qβ , in which the frequency f is the frequency
of interest in the recording (see more discussion ofQ below).
For the site response, we expect a linear regime for these
small-magnitude events. This is based on prior studies
(e.g., Seyhan and Stewart, 2014) that find a linear VS30 term
coefficient (a6) of −0:6 for PGA. Because VS30 is the average
shear-wave velocity in the top 30 m of the Earth’s surface,
this coefficient implies that smaller values of VS30 (i.e., softer
sediments) cause amplification; shaking should be greater on
softer uncosolidated material than on hard rock. The inter-
cept serves as an overall adjustment to the dataset.

The first category of models, six-coefficient models,
contains six models, labeled A6–D6 (Table 1). The second
category, with five-coefficient models, contains seven models,
labeled A5–G5 (Table 1). Models A6 and A5 are the least-

Decomposing Leftovers: Event, Path, and Site Residuals for a Small-Magnitude Anza Region GMPE 5

BSSA Early Edition



squares inversion and single-mean models; all other models are
mixed-effects models. In our models, we find that the coeffi-
cients a1–a5 in the least-squares regression models A6 and A5
are to some degree realistic in their physical representation: a5,
the intrinsic attenuation term, exhibits a negative coefficient;
a4, the geometrical spreading term, is computed to be approx-
imately−1:7 in both A6 and A5, stronger than previous studies
but much closer to a seismologically derived value than what
the mixed-effects models B6 and B5 (with all coefficients in-
verted for) yield. The source term coefficients a2 and a3 vary
from those in recent Next Generation Attenuation-West2
(NGA-West2) GMPEs (e.g., Abrahamson et al., 2014) because
steeper slopes are expected for these smaller magnitudes.

Here, we define uncertainties to be similar if they are
within 0.03 natural log units apart because this is approxi-

mately equal to the standard deviation of uncertainties
between models such as in NGA-West2 (Gregor et al.,
2014). The total uncertainty and event-term uncertainty
(σ and τ) for least-squares A6 and A5 are similar to each
other and greater than those in their related mixed-effects
models (B6–D6_site, and B5–G5); the site and path uncer-
tainties (ϕS and ϕP) are similar between A6 and A5 and
slightly smaller than the mixed-effects counterparts (0.66–
0.68). POLS models exhibit a nonzero mean event and site
term but zero value of the mean path term. This is because the
mixed-effects approach effectually minimizes the means of
the random effects populations; however, the POLS model
does not weight the inversion based on the representation
of each event and site, thus leading to a nonzero mean of
the unique event and site terms for the POLS.

Table 2
Models and Their Resulting Uncertainties

Model Name Number of Terms Model Comments δijMean σ δEi Mean τ δSj Mean ϕS δWSij Mean ϕSS

A6 6 Single mean 0 0.9 −0.031 0.48 0.08 0.65 0 0.46
B6 6 ME (invert all) 0 0.88 0 0.38 0 0.67 0 0.42
C6 6 ME (set a2–a5) 0 0.87 0 0.35 0 0.67 0 0.43

C6_site 6 ME (set a2–a6) 0 0.88 0 0.35 0 0.68 0 0.43
D6 6 ME (set a4 and a5) 0 0.86 0 0.35 0 0.66 0 0.43

D6_site 6 ME (set a4–a6) 0 0.88 0 0.35 0 0.68 0 0.43
A5 5 Single mean 0 0.91 −0.032 0.47 0.05 0.64 0 0.46
B5 5 ME (invert all) 0 0.87 0 0.38 0 0.66 0 0.42
C5 5 ME (set a2–a5) 0 0.87 0 0.35 0 0.67 0 0.43
D5 5 ME (set a4 and a5) 0 0.87 0 0.35 0 0.67 0 0.43
E5 5 ME (set a4 � −1:0) 0 0.88 0 0.34 0 0.67 0 0.45
F5 5 ME (set a4 � −1:2) 0 0.87 0 0.34 0 0.67 0 0.44
G5 5 ME (set a4 � −1:5) 0 0.86 0 0.34 0 0.66 0 0.43

Six-term models include a VS30 term; five-term models do not. δij mean, mean of the total residuals; σ, standard deviation of the total residuals;
δEi mean, mean of the unique event terms; τ, – standard deviation of the unique event terms; δSj mean, mean of the unique site terms; ϕS, - standard
deviation of the unique site terms; δWSij mean, mean of the path (path + aleatory) terms; ϕSS, standard deviation of the unique path (path +
aleatory) terms.

Table 1
Model Coefficients

Model Name Number of Terms Model Comments VR (%) a1 a2 a3 a4 a5 a6

A6 6 Single mean 99.4 2.45 0.42 −0.17 −1.73 −0.0056 0.56
B6 6 ME (invert all) 99.9 4.89 0.23 −0.17 −2.44 0.0096 0.023
C6 6 ME (set a2–a5) 96.8 2.33 0.42* −0.17* −1.73* −0.0056* 0.13

C6_site 6 ME (set a2–a6) 97.3 2.56 0.42* −0.17* −1.73* −0.0056* 0.56*
D6 6 ME (set a4 and a5) 99.3 −0.26 0.84 −0.13 −1.73* −0.0056* 0.0061

D6_site 6 ME (set a4–a6) 99.3 −0.0059 0.84 −0.13 −1.73* −0.0056* 0.56*
A5 5 Single mean 99.3 2.76 0.31 −0.18 −1.72 −0.0059 N/A
B5 5 ME (invert all) 99.9 4.87 0.23 −0.18 −2.44 0.0096 N/A
C5 5 ME (set a2–a5) 97.8 2.85 0.31* −0.18* −1.72* −0.0059* N/A
D5 5 ME (set a4 and a5) 99.4 −0.34 0.85 −0.13 −1.72* −0.0059* N/A
E5 5 ME (set a4 � −1:0) 99.7 −5.69 1.48 −0.08 −1.0† −0.02 N/A
F5 5 ME (set a4 � −1:2) 99.6 −4.23 1.31 −0.09 −1.2† −0.02 N/A
G5 5 ME (set a4 � −1:5) 99.5 −2.03 1.05 −0.11 −1.5† −0.01 N/A

ME, mixed effects; VR, variance reduction.
*Coefficients set from the corresponding POLS inversion.
†Coefficients set according to the value shown.
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Comparison between 6 and 5 Coefficient Models

Models B6 and B5 are mixed-effects inversions, inverting
for coefficients for all terms (a1–a5). The resulting coefficients
are very similar. Models C6 and C5 are a mixed-effects inver-
sion run by setting the a2–a5 coefficients to be equal to the
least-squares inversion solution, thus only inverting for a1 and
a6, and a1, respectively. Because the POLSmodel coefficients
vary between least-squares A6 and A5, so do a2–a5 between
mixed-effects models C6 and C5 (in which a2–a5 are set from
models A6 and A5, respectively); however, the uncertainties
remain virtually the same (within 0.02 natural log units).
Model C6_site sets coefficients a2–a6 from model A6’s
values. It is similar to model C5; however, in C6_site, the
VS30 coefficient a6 is also set from the least-squares inversion
A6; thus, the intercept and VR varies between C6_site and C5.
The site standard deviation are only marginally different.

Model D6 (attenuation terms a4 and a5 fixed from least-
squares model A6) may be compared with D5 (a4 and a5 set
from least-squares model A5) because both of these models set
the a4 and a5 coefficients from their associated least-squares
inversions. In this way, we are inverting for all intercept and
magnitude terms, as well as the site-term coefficient in the case
of D6. Between D6 and D5, the magnitude terms a2 and a3 are
virtually the same, though the intercept varies (and of course a4
and a5 vary too). The uncertainties as well as individual site
terms are very similar between these two models. D6_site is
a model computed by setting the a4, a5, and a6 terms from
the associated least-squares inversion, inverting for the intercept
and magnitude term. Its coefficients and uncertainties vary little
from models D6 and D5.

In all of the aforementioned models, the geometrical
spreading term a4 exhibited large negative values (<−1:7).
Traditionally, geometrically spreading is considered to be 1=R,
for which a4 would be−1:0. Mixed-effects models E5, F5, and
G5 were devised to explore the possibility of model conver-
gence if the geometrical spreading term were less than −1:7
and investigate the effects of this on other parameters such as
the intrinsic attenuation coefficient a5. All of these models in-
vert for coefficients a1–a3 and a5. Model E5 sets a4 � −1:0,
model F5 sets a4 � −1:2, and model G5 sets a4 � −1:5. In all
of these models, the intrinsic attenuation coefficient a5 is more
negative than all other models: a5 � −0:02 for models E5 and
F5 with a4 � −1:0 and −1:2, respectively, and a5 � −0:01
for model G5 with a4 � −1:5. These results show that as a4
approaches 0, a5 becomes more negative, as well as a1 (−5:69,
−4:23, and −2:03 for models E5, F5, and G5, respectively).
The magnitude coefficients a2 and a3 are relatively stable
between these models.

Site Terms and VS30

In all six-coefficient models, A6–D6_site, the VS30 term is
positive, which is inconsistent with traditional results that low
VS30 values will amplify ground motions (Seyhan and Stewart,
2014). None of our models show a correlation between site
terms and VS30 values—they all exhibit correlation coefficients

(Pearson’s r-values) of less than 0.03 absolute value (Fig. 4).
Additionally, there is no significant difference in correlation in
this dataset between site terms and VS30 for sites with a mea-
sured versus terrain-based proxy VS30 (Fig. 4c).

The site uncertainty is approximately the same, ϕS �
0:66, 0.67, and 0.68 for D6, D5, and D6_site, respectively.
Even though model D6 includes a VS30 term in its functional
form and model D5 does not, the site terms themselves are vir-
tually the same among these models, with only very slight
differences (<0:01 natural log units; Fig. 4). The VS30 term
coefficient a6 is nearly zero in model D6 (similar to model D5
because the absence of a VS30 term is the same as a zero VS30

term coefficient). However, the intercept varies between these
two models.

In model D6_site, the a6 (VS30 term) coefficient is set from
the least-squares model A6, where it is strongly positive.
Because this essentially corrects the data with a high ground
motion to high VS30 relationship, the site terms for model
D6_site show a weak negative correlation—r � −0:23—with
both VS30 and ln�VS30�, closer to what would be expected in a
model with no VS30 term (Fig. 4a,b). However, model D5 (with
no VS30 term) shows no correlation between the site terms and
either VS30 or ln�VS30�, for either measured or inferred VS30.
Assuming a statistical power of 0.90 and significance level
of 0.05, a correlation between ln�VS30� and the site terms that
is implied by many GMPEs would require a minimum of
68 stations, which we have here (with 78 stations in our study).
Assuming the small correlation we observe, −0:03 at most, a
sample size of 11,677 stations would be necessary to see the
same statistical power of 0.90. These models indicate that this
population of sites does not show a convincing (if any) relation-
ship between PGA and VS30.

Discussion

Physical Meaning of Our Preferred Model

The preferred model of this study is model F5: a mixed-
effects model with geometric spreading coefficient a4 set to
−1:2 (i.e., 1=R1:2), inverting for the remaining coefficients
(Fig. 5). We chose a five-coefficient model with no VS30 term
because of the lack of correlation of VS30 and site terms re-
gardless of model parameters (Table 2). Steidl (2000) finds a
similar result of a weak to no correlation between VS30 and
empirical site terms, and thus we prefer this five-coefficient
model. The overall uncertainty for this model is σ � 0:87,
the geometrical spreading and intrinsic attenuation coeffi-
cients are representative of known physical processes, and
the magnitude terms also seismologically preferred because
they yield a slope approaching M 1.5 at smaller magnitudes
and decreasing with larger magnitudes.

Because the fit of several of the models is very similar
(i.e., large variance reductions; Table 1), we rely on indepen-
dent seismological information to choose a reasonable model
based on the physical implications of the various coefficients.
For these considerations, we look to the distance-dependent
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terms in the GMPE—for geometrical spreading (a4) and in-
trinsic attenuation parameter (a5). These two coefficients are
highly correlated; it is difficult in regression to fully separate
them. We prefer a model that demonstrates a geometrical
spreading coefficient (a4), which is closer to observed values
from simulations (−1:2; i.e., model F5, see more discussion
later), and an intrinsic attenuation coefficient that is realistic
considering the observed values of Q in the region. The typ-
ical formulation for amplitude decay from intrinsic anelastic
attenuation is exp�−πRfQβ �, yielding an approximation for a5 of

EQ-TARGET;temp:intralink-;df13;55;111a5 ≈
−πf
Qβ

; �13�

or

EQ-TARGET;temp:intralink-;df14;385;733Q ≈
−πf
a5β

: �14�

Further details and previous applications
of this approximation can be found in Bal-
tay and Beroza (2013) and Bostock et al.
(2015). Of course, for PGA at these small
magnitudes, we do not know exactly what
the frequency f is, but we expect it to be in
the 3- to 20-Hz range. For the magnitudes
we consider, between M 1 and 4, large
corner frequencies coupled with high-
frequency attenuation of the signal (i.e.,
fmax or κ) implies the signals are relatively
narrowband, sowe expect PGA to come from
this relatively narrow range of frequencies.

Several of the models considered
herein have intrinsic attenuation coeffi-
cients a5 � ∼ − 0:006, comparable to
those featured in NGA-West2 GMPEs
(e.g., Bozorgnia et al., 2014); substituting
those into equation (14) for the 3- to 20-Hz
range and assuming β � 3:5 km=s
suggest Q-values from ∼500 to ∼3100,
much larger than what is typically ob-
served in southern California (Hauksson
and Shearer, 2006). However, in the pre-
ferred model F5, a5 � −0:02 indicates
lower Q-values of ∼140–930 for assumed
high frequencies of PGA for these small
magnitudes, which is in closer agreement
with observed values ofQ in the region for
the paths of these event to station pairs. We
recognize the simplicity of approximating
a5 in this way because PGA does not nec-
essarily come from a single frequency, but
it does provide a physical basis for sepa-
rating the two terms that are otherwise
numerically correlated and gives us some
insight into the physical plausibility of the
chosen GMPE model.

In light of this, our preferred model F5 has a geometrical
spreading coefficient a4 of −1:2, which we set a priori.
Numerical simulations for our study region (Frankel et al.,
1990) suggest that the geometrical spreading coefficient may
be −1:2 or −1:3. Ten of the other models considered have
much stronger geometric spreading, whether fixed or inverted
(near−1:7 or stronger), similar to the small-magnitude spread-
ing coefficients from other GMPEs such as NGA-West2.
Constraining both the geometrical spreading and intrinsic
attenuation terms is difficult because these terms are highly
correlated. In fact, many GMPE developers constrain these
two terms independently, in a multistage approach (e.g., Boore
et al., 2014; Thompson and Baltay, 2017). The models with
unrealistically strong geometric spreading (a4 ≈ −1:7 or
stronger) also have unphysically weak intrinsic attenuation

(a)

(b)

(c)

Figure 4. Site terms versus VS30 with site standard error as bars for three models, E6
(VS30 term inverted), D5 (no VS30 term), and F6 (VS30 term set from least-squares inver-
sion), and for a single model with measured versus proxy VS30 values. (a) VS30 on the x
axis, with correlation coefficients (r) and p-value for each of the three models as stated in
the legend. (b) ln�VS30� plotted on the x axis for each of the three models. (c) Site term
versus VS30 for model D5 for the sites with measured VS30 separated from sites with proxy
VS30 values. The color version of this figure is available only in the electronic edition.
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terms (a5 ≈ −0:006), as discussed earlier. In light of the chal-
lenges, we particularly favor model F5 because its coefficients
are more physically based. This is not an attempt to include
more physics in the GMPE in a statistically robust fashion but
to select a preferred model. This analysis has shown that there
is more than one model that can fit the data equally well, and
this method of discrimination may allow the final model to
extrapolate to larger magnitudes and farther distances appro-
priately better than a model with less physical significance.

We plot models A5, D5, E5, and F5 for two distances
(10 and 80 km) along with the results from prior studies
(Abrahamson et al., 2014; Baltay et al., 2017: hereafter,
ASK14 and BHA17, respectively; Fig. 6). The differences
among models D5, E5, and F5 are minimal. The greatest dif-
ference is found among the three D5, E5, and F5 models and
the least-squares model A5. This is likely because the mixed-
effects models (D5, E5, and F5) solve for a median model in
conjunction with the random effects, producing a more robust
median model than the least-squares A5. In comparison with
the ASK14 and BHA17 results, our models produce similar
results with only slight differences between the intercept (be-
tween 0.5 and 1.0 log10 units) and slope (difference of ∼0:2).
Our model F5 closely tracks ASK14 for magnitudes greater
than 3, the magnitude range from which it was developed, and
only diverges for the smaller magnitudes where it was not con-
strained. This gives us even more confidence in our model and
suggests that it can be used in concert with ASK14 to predict
smaller magnitude ground motions. Larger differences are
observed with the BHA17 model, likely because of different
development methods (BHA17 set a magnitude slope of 1.5
consistent with source physics) and a different dataset (a
small-magnitude Anza-region dataset with recordings only

within 20 km in the case of BHA17). We also note that
our small-magnitude GMPE continues to steepen with mag-
nitude at smaller and smaller magnitudes, a physically desir-
able attribute as the slope approaches the theoretical limit of
M 1.5 (Baltay and Hanks, 2014). We conclude that our model
results are within the expected agreement with past studies but
perhaps more tailored to the region and extrapolable with
coefficients representative of the underlying physics.

Mixed-Effects MLE versus OLS Approach

The standard deviation of the event terms τ, is always
lower in the MLE approach than the POLS method (Fig. 7a).
Whereas events recorded on many stations (>25) produce
similar event terms and uncertainties for both the POLS and
mixed-effects methods, events recorded by few stations
show large variation between the two approaches, with the

Figure 5. PGA data plotted with preferred model F5 at fixed
distances. F5 is a model with geometrical spreading set a priori
to −1:2. Observations are shaded by Rrup, ground-motion prediction
equation (GMPE) annotations next to their fixed distance line.
ASK14 (Abrahamson et al., 2014) is plotted at 10 km in light gray
for comparison with the preferred GMPE. The color version of this
figure is available only in the electronic edition.

10 km

80 km
80 km

10 km

80 km

10 km

80 km

10 km

80 km

10
km

80
km

A5 - least-squares
D5 - a4 = –1.7, set from A5
E5 - a4 = –1.0
F5 - a4 = –1.2
ASK14
BHA17
9 km < Rrup < 11 km
79 km < Rrup < 81 km

Figure 6. A comparison of four GMPEs presented here (models
A5, D5, E5, and F5), along with those of ASK14, and Baltay et al.
(2017; hereafter, BHA17). Black dashed line, model A5; black
small dashed-dotted line, model D5, a4 � −1:7 from model A5;
black dotted line, model E5, a4 � −1:0; black solid line, model
F5, a4 � −1:2; lighter gray line, ASK14; and darker gray line,
BHA17. BHA17 and ASK14 lines are solid where constrained
by data. Light-gray circles are all recordings with Rrup greater than
9 km and less than 11 km; medium-gray circles are all recordings
with Rrup greater than 79 km and less than 81 km. The color version
of this figure is available only in the electronic edition.
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mixed-effect value always being less (on an absolute scale,
i.e., closer to 0) than the POLS value for that event term. This
skewedness is a direct result of how the computational method
solves for the random effects values. Abrahamson and Youngs
(1992) outline an algorithm to compute the values of random
effects (event terms) for a mixed-effects model with only a
single random effect, without removing bias. This is an iter-
ative algorithm, by which the uncertainties are first solved for,
and then the random effects determined from these

EQ-TARGET;temp:intralink-;df15;55;392δEi ME � τ2
Pni

j�1 δij
niτ2 � ϕ2

; �15�

in which δEi ME is the mixed-effects method event term for
earthquake i, δij is the residual for each recording of earthquake
i at station j, τ2 is the variance of all event terms, ϕ2 is the
variance for all within-event terms, and ni is the number of
stations that record event i. We can express equation (15) using
our original definition of the event term (equation 8) as

EQ-TARGET;temp:intralink-;df16;55;278δEi ME � δEi POLS

1� 1
τ2ni

ϕ2
; �16�

in which δEi POLS is the POLS event term for earthquake i.
Thus, for ni large (an event with many recordings), the
demominator of equation (16) approaches 1, and the mixed-
effect event-term approaches the single-mean event term
because this event is better constrained. Rodriguez-Marek et al.
(2013) and Kotha et al. (2017) note this relationship as well.
This is exactly what we observe in Figure 7a, with δEi POLS

for events recorded on many stations (lighter shades) becoming
more similar to δEi ME. For less well-recorded events, the
within-event uncertainty ϕ begins to influence the mixed-effect
event term. The specific relationship between the two-event
terms is governed not by the underlying distribution of event
terms but by the distribution of the site and path terms
because ϕ � st:dev:�δSj � δPij�.

Similarly, if there are two random effects (event and
site), then equation (15) becomes for an event term

EQ-TARGET;temp:intralink-;df17;313;476δEi ME � τ2
Pni

j�1 ln�yij� − μij
niτ2 �mjϕ

2
s � ϕ2

0

; �17�

and for a site term

EQ-TARGET;temp:intralink-;df18;313;424δSj ME � ϕ2
S

Pmj

i�1 ln�yij� − μij
niτ2 �mjϕ

2
s � ϕ2

0

; �18�

in which δSj ME is the mixed-effects site term for station j,
ϕ2
S is the variance for all site terms, ϕ2

0 is the variance for all
remaining residuals—path and aleatory, and mj is the num-
ber of events recorded on station j. Of course, in this case, the
random effects may still be represented as a function of the
POLS event and site terms; for any given event i:

EQ-TARGET;temp:intralink-;df19;313;307δEi ME � τ2SδEi POLS

τ2 � 1
ni
�ϕ2

S � ϕ2
0�
; �19�

and any given station j:

EQ-TARGET;temp:intralink-;df20;313;245δSj ME � ϕ2
SδSj POLS

ϕ2
S � 1

mj
�τ2 � ϕ2

0�
; �20�

in which both equations (19) and (20) can be found by taking
equations (17) and (18) with mj � 1 for any single given
event and for any given station, ni � 1.

Similarly, with a single random effect, for any event or
site, if ni or mj is large, then respectively, the mixed-effects
event or site terms will be closer in value to the POLS event
or site term; for individuals less well constrained, the remain-
ing uncertainty begins to affect the value of the random
effect.

Figure 7. Mixed-effects versus single-mean residuals for models F5 versus A5. (a) Event terms, shaded by the number of stations that
record each event. τ for each model denoted on the axes and hatched in the figure. (b) Site terms, shaded by the number of events recorded on
each station. ϕS for each model denoted on the axes and hatched in the figure. (c) Path terms for each model. ϕP for each model denoted on
the axes and hatched in the figure. Path terms are not shaded because this study does not classify them by similar paths. The color version of
this figure is available only in the electronic edition.
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For the data we use in this study, there are significantly
more events (> 10; 000) than there are sites (∼80). There-
fore, for most stations, mj will be much larger than ni for
any given event. Thus, the site terms show less variation
in values between approaches than the event terms (Fig. 7).
This figure also gives a rule of thumb for how many stations
need to record an event before the two event estimates are
similar: 10 or more stations seems to be sufficient here.

There are important implications for these findings,
which can guide how to use these event, site, and path terms
in future studies. For example, for any given earthquake, a
POLS approach suggests that the event term (or parameter of
interest) is the mean value of observations for that earth-
quake, which will always be between the minimum and
maximum observed value. However, with a mixed-effects
approach, the event term or parameter of interest could be
predicted to be less than any of the observed values. This
may be counterintuitive from a seismological perspective,
but is statistically a more robust approach. A POLS ap-
proach, as we have set up here, assumes that the observations
are independent; however, this is obviously not the case
because recordings at the same station should be strongly
correlated, as well as to some extent recordings of the same
earthquake at different stations.

Mixed-effects models do not assume this and use random
effects to compensate for biases derived from the selected
population of variables in the dataset (in this application, the
selected population of earthquakes and stations). This yields a
better median model and includes an estimate of the random
effects (or residuals that may be of interest to seismological
applications). This is also reflected in the definition of an
MLE (the backbone of the mixed-effects algorithm): the MLE
maximizes the likelihood of any one observation being part of
the underlying distribution (of fixed and random effects),
while simultaneously estimating the uncertainty. An ordinary
least-squares (OLS) algorithm (i.e., with no covariance)
assumes that the data are normally distributed and simply
minimizes the squared error. Further details of the implica-
tions of a POLS versus mixed-effects approach with regard to
event terms and stress drops are planned to be released by
coauthor Baltay and others.

Similarly, there are implications for site terms or site
parameters. If there are on average many more recordings per
earthquake than recordings per station, as in our study, the
inversions place more uncertainty in the site term in the
mixed-effects approach than the POLS approach, resulting
in a slightly lower POLS site term than mixed-effects site
term. In contexts with similar event-to-station data weights,
POLS approaches place less variability in site terms than are
realistic. To the contrary, in studies in which the number of
stations outweigh the number of events, these results could
be reversed, where the POLS method may place more vari-
ability in the site term than is warranted. In either case, the
selection of the method used to compute these terms is an
important consideration when interpreting the results, in
particular if the residual values are of interest.

The path term in this study is not a random effect, so
equations (15)–(20) do not apply to the computation thereof.
The path terms are simply the remaining residuals between the
observations and predictions from the GMPE plus random ef-
fects. Of course, because the mixed-effects approach attempts
to find the maximum-likelihood solution for GMPE coeffi-
cients and random effects simultaneously, the overall model
fit is better; the uncertainty in the path terms by definition will
be smaller in the mixed-effects approaches than in the POLS
approach. Although this is what we observe, the differences
are small, showing only 0.03 between approaches. As such,
the method used to obtain these path terms is not as important
in the final analyses using the path terms and their uncertain-
ties. Regardless, our results suggest that the mixed-effects
approach is still the preferred solution to obtain path terms
because the median model on which they are based will not
be biased by random effects (the selected population of earth-
quakes and stations).

The differences between (and implications of) these two
approaches are not new. The MLE approach has been widely
used in ground motion and engineering seismology since the
1980s (Brillinger and Preisler, 1984, 1985; Abrahamson and
Youngs, 1992). Some recently published studies in the ground-
motion field have also compared the POLS and MLE ap-
proaches, with focuses on the resulting uncertainties between
models (Stafford, 2014; Kotha et al., 2016, 2017). However,
the POLS approach remains integral in studies arising from the
broader seismological community in obtaining event or site
correction terms (Andrews, 1986; Allmann and Shearer, 2009;
Kilb et al., 2012). Because the ANZA seismic network and
southern California region have long served as popular natural
laboratory for many seismological source and structure studie
and because the availability of seismological data here will
only increase, we hope that this article may reach such an audi-
ence and augment such future studies.

Site Effects and VS30

Finally, the results of this study show that the site terms
do not correlate with VS30. This is demonstrated in Figure 4,
as well as in Figure 8, where the VS30 and site-term values for
the stations in this dataset are plotted in map view. From
Figure 4 and Table 1, it is evident that model D5, with no
VS30 term, produces virtually the same values (within 0.01
natural log units) of site terms as model D6 (including an
inverted VS30 term coefficient). The mixed-effects model D5
seems to compensate for the lack of a VS30 term by
adjusting the intercept coefficient a1 to produce the same site
terms as model D6_site (for which the a6 coefficient is in-
verted and very small) for the maximum-likelihood solution.
The least-squares model A6 does not contain random effects
in which to place any site residuals, so any site effects (VS30-
related or not) are placed in the a6 coefficient instead of in a
site term and adjusted a1 coefficient. In model D6_site, where
a6 is set from the least-squares model, the mixed-effects in-
version compensates for the unrealistic input VS30 relationship
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by adjusting the site terms and thus the larger standard
deviation of the unique site terms φS (Table 2).

There are several possibilities to explain the underlying
causes of this null relationship between site terms and VS30.
We did not conduct a detailed investigation but suggest some
possibilities, including:

1. The relatively homogeneous distribution of medium- to
hard-rock VS30 values within the dataset (Fig. 2c), which
makes a linear fit statistically difficult; an absence of
large basins or sedimentary fill (the sediment at these
sites being mainly surficial or very compacted sediment
(Dibblee, 1954; Sharp, 1967). Some studies (Pulido and
Matsuoka, 2006) suggested that in regions such as these,
VS5 or VS10 may be a better measure of site effects.

2. The small-magnitude nature of the dataset (Fig. 2a) leading
to mostly linear site effects, but VS30 may be most effective
for studies with nonlinear response. This may be related to
(1) as higher frequencies such because these would respond
to shallower sheens of sediment over bedrock.

3. That the small magnitudes yield PGA at high frequencies,
in which VS30 relationships have been observed to have an
opposite sign (amplification for larger VS30) than at lower
frequencies (Steidl, 2000; Thompson and Wald, 2016).

4. Perhaps that, at least in this region, site effects may be
derived from more than just near-surface characteristics.
Kotha et al. (2016) noted that the correlation between site
amplification and VS30 appeared to be region dependent.

Site effects here may be more representative of charac-
teristics in some km3-wide volume surrounding the site
(Fig. 8) in that they are reflecting near-site path effects. These
results are not surprising because other studies have found

that VS30 is often not a robust estimate of site effects
(Gallipoli and Mucciarelli, 2009) and that a better correlation
between representation of site effects is often a combination
of site-condition proxies such as VS30 and H800 (depth to
800 m=s; Derras et al., 2016, 2017) or Z1:0 (depth to
1:0 km=s). Derras et al. (2016, 2017) observed a lack of cor-
relation between amplification and VS30, though they found
an improved correlation between these with measured VS30

as opposed to an inferred or proxy VS30. We do not observe
an improved correlation here (0.01 vs. −0:03). Finally, these
results only show an absence of correlation between VS30 and
PGA; however, a definitive study on site amplification and
VS30 warrants an analysis of a broader frequency range.

In light of these site-term observations, we provide a table
of PGA site-term corrections (our site residuals, Table 3),
which may be used as corrections for studies interested in re-
moving site effects. We expect this information will be useful
for future studies that use southern California data and in par-
ticular ANZA (AZ) and Caltech (CI) network stations such as
that of Kilb et al. (2012), who estimated kappa from similar
magnitude earthquakes on ANZA stations, or Trugman and
Shearer (2017), who decomposed spectra into source, site,
and path components for small-magnitude events using some
of the same stations to estimate earthquake stress drop. The
high-frequency site terms as we publish here are very appli-
cable and could be very useful for these types of studies. The
provided terms in Table 3 are additive in units of ln(PGA) and
should only be used for events within the magnitude range of
the model we have derived (Stafford et al., 2017). This
approach is becoming more common and has been shown to
both reduce uncertainty and move toward partially nonergodic
models (Rodriguez-Marek et al., 2013; Landwehr et al., 2016;

Figure 8. (a) Map view of VS30 for each station in the database; (b) map view of the site term for each station in the database from our
favored model F5. A correlation between VS30 and site terms would imply that lower VS30 values (lighter shades in panel a) would correspond
to higher ground motions or site terms (lighter shades in panel b). The color version of this figure is available only in the electronic edition.
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Barbour and Crowell, 2017; Kotha et al., 2017; Ktenidou
et al., 2018). However, a caveat is that it may only be of
use to studies using existing, well-recorded earthquakes un-
less an analysis as demonstrated by Kotha et al. (2017) is
performed. Future work in this region is needed to develop
measurable parameters that can be used for site corrections
for potential site locations that do not yet have the earthquake
recording density necessary to drive these values empirically.

Conclusions

We use a large database of earthquake recordings
(>120; 000 waveforms) to obtain a GMPE in southern
California, applicable to small-magnitude events and specific
for the local region. Although the GMPE was developed on
this specific small-magnitude database (0:5 ≤ M ≤ 4:5), we
ensured that the expected underlying physics in terms of the
magnitude and distance scaling was appropriately represented.
In this way, the model should extrapolate well to larger mag-
nitudes or distances ranges. In search of a suitable regional
GMPE, this study investigated the effects of a traditional
POLS versus a mixed-effects MLE approach on computing
event, site, and path residuals within a dataset. The results
suggest that the method used to obtain these terms has sig-
nificant implications for any studies examining uncertainties
within these terms or event, site, or path parameters. We find
that a mixed-effects approach is the best method for working

with ground-motion data, as well as other
geophysical datasets for which independ-
ence may not be a suitable assumption. In
this particular application, in which the
path terms are treated as the remaining
residual and not a random effect, we sug-
gest that a mixed-effects approach is the
best method for obtaining path terms be-
cause the median model will not be biased
by the selected population of earthquakes
and stations. The stations in this study do
not show a correlation between PGA and
VS30, indicating that VS30 is not represen-
tative of site effects in this region. We pro-
vide a table of site terms that may be used
as a correction in studies using PGA for
these stations. Future studies in this region
should perform similar analyses to find a
GMPE and site terms for PGV and EAS,
similar to the work of Bindi et al. (2017).

Data and Resources

This work used a database of record-
ings and parameters computed by Janine
Buehler and Frank Vernon and the Scripps
Institution of Oceanography. These wave-
form data are publicly available and posted

by the Scripps ANZA network on the Incorporated Research
Institutions for Seismology (IRIS) Data Management Center
(www.iris.edu, last accessed January 2017); however, the
processing of these data was performed at Scripps using Ante-
lope and MATLAB. The flatfile including event and station
location, event magnitude, distance, and peak ground acceler-
ation (PGA) is included in the Ⓔ electronic supplement. The
authors used python and R to perform further analyses on these
data and Generic Mapping Tools (GMT; Wessel and Smith,
1998) to create the maps featured here.
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