LIBUDA  LAB

Computationally straighted C. elegans meiotic chromosome from the late pachytene region of the germ line; stained by HTP-3 and COSA-1
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation
Oocyte nucleus from the C. elegans germline stained with COSA-1 to mark meiotic crossover formation

Erik Toraason, Alina Salagean, David Almanzar, Ofer Rog, and Diana E. Libuda (2022).  BRCA1/BRC-1 and SMC-5/6 regulated DNA repair pathway engagement during C. elegans meiosis.

bioRxiv https://doi.org/10.1101/2022.06.12.495837

 

Erik Toraason, Victoria L. Alder, and Diana E. Libuda (2022). Aging and sperm signals alter DNA break formation and repair in the C. elegans germline.

bioRxiv https://doi.org/10.1101/2022.06.06.494960

 

Cori K. Cahoon and Diana E. Libuda (2021).  Conditional immobilization for live imaging C. elegans using auxin-dependent protein depletion.

G3:Genes|Genomes|Genetics, https://doi.org/10.1093/g3journal/jkab310

 

Erik Toraason, Marissa Glover, Anna Horacek,  and Diana E. Libuda (2021).  Detection of homolog-independent meiotic DNA repair events in C. elegans with the Intersister/Intrachromatid Repair (ICR) Assay.

STAR Protocols doi:10.1016/j.xpro.2021.100801

 

Erik Toraason, Anna Horacek, Cordell Clark, Marissa L. Glover, Victoria L. Adler, Tolkappiyan Premkumar, Alina Salagean, Francesca Cole, and Diana E. Libuda (2021).  Meiotic DNA repair can utilize homolog-independent chromatid templates in C. elegans.

Current Biology https://doi.org/10.1016/j.cub.2021.03.008

 

Erik Toraason, Victoria L. Adler, Nicole A. Kurhanewicz, Acadia DiNardo, Adam M. Saunders, Cori K. Cahoon, and Diana E. Libuda (2021).  Automated and customizable quantitative image analysis of whole C. elegans germlines.

Genetics https://doi.org/10.1093/genetics/iyab010

 

Nicole A. Kurhanewicz, Devin Dinwiddie, Zachary D. Bush, and Diana E. Libuda (2020).   Elevated temperatures cause transposon-associated DNA damage in C. elegans spermatocytes.

Current Biology  Oct 10:S0960-9822(20)31420-2. doi: 10.1016/j.cub.2020.09.050.

 

Jeremy A. Hollis, Marissa L. Glover, Aleesa Schlientz, Cori K. Cahoon, Bruce Bowerman, Sarah M. Wignall, and Diana E. Libuda (2020). Excess crossovers impede faithful meiotic chromosome segregation in C. elegans. PLoS Genetics, 16(9): e1009001. https://doi.org/10.1371/journal.pgen.1009001

 

Cori K. Cahoon, Jacquellyn M. Helm, and Diana E. Libuda (2019).  Synaptonemal Complex Central Region Proteins Promote Localization of Pro-crossover Factors to Recombination Events During Caenorhabditis elegans Meiosis.

Genetics  Oct;213(2):395-409. doi: 10.1534/genetics.119.302625.

 

Cori K. Cahoon and Diana E. Libuda (2019).  Painting chromosomes in the nucleus.

eLife  May 14;8. pii: e47468. doi: 10.7554/eLife.47468

 

Cori K. Cahoon and Diana E. Libuda (2019).  Leagues of their own: sexually dimorphic features of meiotic prophase I.

Chromosoma  doi:10.1007/s00412-019-00692-x

 

Mara Schvarzstein, Divya Pattabiraman, Diana E. Libuda, Ajit Ramadugu, Angela Tam, Enrique Martinez-Perez, Baptiste Roelens, Karl Zawadzki, Rayka Yokoo, Simona Rosu, Kentaro Nabeshima, and Anne M. Villeneuve (2014).  DNA helicase HIM-6/BLM promotes MutSĪ³-dependent crossovers and antagonizes MutSĪ³-independent interhomolog associations during C. elegans meiosis.

Genetics, 198(1):193-207, doi:10.1534/genetics.114.161513

 

Diana E. Libuda, Satoru Uzawa, Barbara J. Meyer, and Anne M. Villeneuve (2013).  Meiotic chromosome structures constrain and respond to designation of crossover sites.

Nature  502, 703-706.

                      -recommended in Faculty of 1000

 

Simona Rosu, Karl A. Zawadzki, Ericca L. Stamper, Diana E. Libuda, Angela L. Reese, Abby F. Dernburg, and Anne M. Villeneuve (2013).  The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation.

PLoS Genetics 9(8): e1003674.

 

Simona Rosu, Diana E. Libuda, and Anne M. Villeneuve (2011).  Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number.

Science 334, 1286-9.

                      -recommended in Faculty of 1000

 

Diana E. Libuda and Fred Winston (2010).  Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae.

Genetics, 184, 985-97.

 

Diana E. Libuda and Fred Winston (2006).  Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae.

Nature, 443, 1003-7.

                      -recommended in Faculty of 1000

 

Sanja Ivkovic, Byeong S. Yoon, Steven N. Popoff, Fayez F. Safadi, Diana E. Libuda, Robert C. Stephenson, Aaron Daluiski, and Karen M. Lyons (2003).  Connective Tissue Growth Factor is an essential regulator of skeletal development.

Development, 130, 2779-91.

 

Libuda Lab home page button; DSBs marked by RAD-51 foci in a single C. elegans germ cell nucleus