Haley Lab, University of Oregon

Anion Sensing


Partner site with Johnson lab

Many anions are problematic environmental contaminants and are vital to many processes in nature, with anion binding proteins and transport channels implicated in the mechanisms of many disease pathways. This avenue of research is a productive collaboration between the Haley lab and that of UO colleague Darren Johnson to target new organic receptors that selectively bind and sense anions. The project is a union of the synthetic expertise of the Haley group toward the assembly of relatively rigid and inherently fluorescent molecules based on arylethynyl scaffolding with the extensive knowledge of the Johnson lab to design and exhaustively analyze complex supramolecular systems.

Anion Sensing, Figure 1 Anion Sensing, Figure 2

The modularity of our design strategy allows for exploration of a variety of recognition motifs for anions, including electrostatic attractions, hydrogen bond interactions and attractions with electron-deficient arenes (anion-π, CH•••X hydrogen bonds and weak-sigma complexes). This flexibility affords the possibility of selectively binding anions that are challenging to target with traditional approaches. Core and linker substitution provides another approach to tuning the selectivity of the receptors by changing the shape and size of the binding pocket, in addition to modification of the fluorescent behavior through adjustment of the electronics of the conjugated core fluorophore. The functionality of the receptors can also be adjusted to provide water-solubility to the molecules or even cell membrane permeability. These sensors will have long-term applications in sensing, imaging and/or remediating anions, which will impact public health in both discovering and removing environmental contaminants and imaging the role anions play in biological processes.

Work on the bis(arylethynyl) bisurea based receptor class has also led to a successful start-up company, SupraSensor Technologies. Co-founded by Haley, Johnson, and former graduate student Dr. Calden Carroll, SupraSensor targets nitrate detection for applications in precision agriculture. Both the basic research from the Haley/Johnson collaboration as well as the applied science from Carroll and his team were highlighted in an NSF-sponsored "Science Nation" video (http://www.nsf.gov/news/special_reports/science_nation/suprasensor.jsp).



Relevant Publications



Anion-directed self-assembly of a 2,6-bis(2-anilinoethynyl)pyridine bis(amide) scaffold



Tresca, B. W.; Berryman, O. B.; Zakharov, L. N.; Johnson, D. W.; Haley, M. M. Supramol. Chem. 2016, 28, 37-44.
DOI: 10.1080/10610278.2015.1072199




Substituent Effects in CH Hydrogen Bond Interactions: Linear Free Energy Relationships and Influence of Anions



Tresca, B. W.; Hansen, R. J.; Chau, C. V.; Hay, B. P.; Zakharov, L. N.; Haley, M. M.; Johnson, D. W. J. Am. Chem. Soc. 2015, 137, 14959-14967.
DOI: 10.1021/jacs.5b08767




Facile Synthesis and Properties of 2-λ5-Phosphaquinolines and 2-λ5-Phosphaquinolinones



Vonnegut, C. L.; Shonkwiler, A. M.; Khalifa, M. K.; Zakharov, L. N.; Johnson, D. W.; Haley, M. M. Angew. Chem. Int. Ed. 2015, 54, 13318-13322.
DOI: 10.1002/anie.201507696




‘Off-On’ Aggregation-Based Fluorescent Sensor for the Detection of Chloride in Water



Watt, M. M.; Engle, J. M.; Fairley, K. C.; Robitshek, T. E.; Haley, M. M.; Johnson, D. W. Org. Biomol. Chem. 2015, 13, 4266-4270.
DOI: 10.1039/C4OB02409E




Solid-State Examination of Conformationally Diverse Sulfonamide Receptors Based on Bis(2-anilinoethynyl)pyridine, -Bipyridine, and -Thiophene



Berryman, O. B.; Johnson, C. A.; Vonnegut, C. L.; Fajardo, K. A.; Zakharov, L. N.; Johnson, D. W.; Haley, M. M. Cryst. Growth Des. 2015, 15, 1502-1511.
DOI: 10.1021/cg5018856




Ion and Molecular Recognition Using Aryl–Ethynyl Scaffolding



Vonnegut, C. L.; Tresca, B. W.; Johnson, D. W.; Haley, M. M. Chem. Asian J. 2015, 10, 522-535.
DOI: 10.1002/asia.201403212

Cover art:




Exploring anion-induced conformational flexibility and molecular switching in a series of heteroaryl-urea receptors



Gavette, J. V.; Evoniuk, C. J.; Zakharov, L. N.; Carnes, M. E.; Haley, M. M.; Johnson, D. W. Chem. Sci. 2014, 5, 2899–2905.
DOI: 10.1039/C4SC00950A




Intramolecular N–H•••Cl hydrogen bonds in the outer coordination sphere of a bipyridyl bisurea-based ligand stabilize a tetrahedral FeLCl2 complex



Gavette, J. V.; Klug, C. M.; Zakharov, L. N.; Shores, M. P.; Haley, M. M.; Johnson, D. W. Chem. Commun. 2014, 50, 7173–7175.
DOI: 10.1039/C4CC02297A




Synthesis and solid-state structures of a macrocyclic receptor based on the 2,6-bis(2-anilinoethynyl)pyridine scaffold



J. M. Engle, P. S. Singh, C. L. Vonnegut, L. N. Zakharov, D. W. Johnson and M. M. Haley CrystEngComm 2014, 16, 3703-3706.
DOI: 10.1039/C3CE42307G




Selective Nitrate Binding in Competitive Hydrogen Bonding Solvents: Do Anion–π Interactions Facilitate Nitrate Selectivity?



Watt, M. M.; Zakharov, L. N.; Haley, M. M.; Johnson, D. W. Angew. Chem. Int. Ed. 2013, 52, 10275–10280.
DOI: 10.1002/anie.201303881




An Anion-Modulated Three-Way Supramolecular Switch that Selectively Binds Dihydrogen Phosphate, H2PO4



Gavette, J. V.; Mills, N. S.; Zakharov, L. N.; Johnson, C. A.; Johnson, D. W.; Haley, M. M. Angew. Chem. Int. Ed 2013, 52, 10460–10464.
DOI: 10.1002/anie.201302929




Aryl C–H•••Cl hydrogen bonding in a fluorescent anion sensor



Tresca, B. W.; Zakharov, L. N.; Carroll, C. N.; Johnson, D. W.; Haley, M. M. Chem. Commun. 2013, 49, 7240-7242.
DOI: 10.1039/C3CC44574G




Lithium-selective phosphine oxide-based ditopic receptors show enhanced halide binding upon alkali metal ion coordination



Gavette, J. V.; Lara, J.; Reling, L. L.; Haley, M. M.; Johnson, D. W. Chem. Sci. 2013, 4, 585-590.
DOI: 10.1039/C2SC21501B




Synthesis and optoelectronic properties of 2,6-bis(2-anilinoethynyl)pyridine scaffolds



Engle, J. M.; Carroll, C. N.; Johnson, D. W.; Haley, M. M. Chem. Sci. 2012, 3, 1105-1110.
DOI: 10.1039/C2SC00975G




Molecular Self-Assembly: Solvent Guests Tune the Conformation of a series of 2,6-Bis(2-anilinoethynyl)pyridine-Based Ureas



Engle, J. M.; Lakshminarayanan, P. S.; Carroll, C. N.; Zakharov, L. N.; Haley, M. M.; Johnson, D. W. Cryst. Growth Des. 2011, 11, 5144-5152.
DOI: 10.1021/cg201074v




Lithium cation enhances anion binding in a tripodal phosphine oxide-based ditopic receptor



Gavette, J. V.; Lara, J.; Berryman, O. B.; Zakharov, L. N.; Haley, M. M.; Johnson, D. W. Chem. Commun. 2011, 47, 7653-7655.
DOI: 10.1039/C1CC12475G




Anion-dependent fluorescence in bis(anilinoethynyl)pyridine derivatives: switchable ON–OFF and OFF–ON responses



Carroll, C. N.; Coombs, B. A.; McClintock, S. P.; Johnson II, C. A.; Berryman, O. B.; Johnson, D. W.; Haley, M. M. Chem. Commun. 2011, 47, 5539-5541.
DOI: 10.1039/C1CC10947B




Arylethynyl receptors for neutral molecules and anions: emerging applications in cellular imaging



Carroll, C. N.; Naleway, J. J.; Haley, M. M.; Johnson, D. W. Chem. Soc. Rev. 2010, 39, 3875–3888.
DOI: 10.1039/B926231H




Anion Binding Induces Helicity in a Hydrogen-Bonding Receptor: Crystal Structure of a 2,6-Bis(anilinoethynyl)pyridinium Chloride



Johnson, C. A.; Berryman, O. B.; Sather, A. C.; Zakharov, L. N.; Haley, M. M.; Johnson , D. W. Cryst. Growth Des., 2009, 9 (10), 4247–4249.
DOI: 10.1021/cg900674p




Protonation activates anion binding and alters binding selectivity in new inherently fluorescent 2,6-bis(2-anilinoethynyl)pyridine bisureas



Carroll, C. N.; Berryman, O. B.; Johnson, C. A.; Zakharov, L. N.; Haley, M. M.; Johnson, D. W. Chem. Commun. 2009, 18, 2520–2522.
DOI: 10.1039/B901643K




Water and Hydrogen Halides Serve the Same Structural Role in a Series of 2+2 Hydrogen-Bonded Dimers Based on 2,6-Bis(2-anilinoethynyl)pyridine Sulfonamide Receptors



Berryman, O. B.; Johnson, C. A.; Zakharov, L. N.; Haley, M. M.; Johnson D. W. Angew. Chem. Int. Ed. 2008, 47, 117-120.
DOI: 10.1002/anie.200703971