Russell J. Donnelly
541-346-4226 (Tel)
541-346-5861 (Fax)


 

<<Previous Intro ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 Next>>
ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 ch21

The Observed Properties of Liquid Helium
at the Saturated Vapor Pressure


Chapter 12. Viscosity and Kinematic Viscosity

Adopted Database

Author(s)

Key #

Method

Range(K)
Woods & Hollis Hallett 1 Couette viscometer 0.78 T 2.079
Tough et al. 2 vibrating wire 1.52 T 2.16
Goodwin 3 vibrating wire 1.2 T 4.2
Webeler & Allen 4 quartz crystal 1.75 T 2.195
Wang et al. 5 torsional oscillator 1.8 T 4.4

Comments and Key to Authors

1) Ref. 13.
2) Ref. 14.
3) Ref. 18, 22, 23.
4) Ref. 21.
5) Ref. 28.
6) The absolute accuracy of viscosity measurements is very hard to evaluate. The best guide is probably the deviation plot in Figure 12.2.
7) To convert Pa-s or kg/m-s to P, multiply by 107, to convert from m2/s to cm2/s, multiply by 104

Table 12.1. Adopted database for the viscosity of liquid 4He.

T90 (K)

(Pa s)

Key

T90 (K)

(Pa s)

Key
0.7913 1.73E-05 1 1.8241 1.34E-06 2
0.8014 1.58E-05 1 1.8441 1.34E-06 2
0.8054 1.62E-05 1 1.8441 1.30E-06 5
0.8164 1.31E-05 1 1.8541 1.29E-06 3
0.8565 8.50E-06 1 1.8641 1.35E-06 2
0.9266 5.50E-06 1 1.8641 1.31E-06 5
1.0108 3.70E-06 1 1.8841 1.36E-06 2
1.122 2.18E-06 1 1.8841 1.32E-06 5
1.132 2.04E-06 1 1.9042 1.34E-06 5
1.142 2.06E-06 1 1.9042 1.32E-06 3
1.162 1.96E-06 1 1.9042 1.35E-06 2
1.2033 1.72E-06 2 1.9242 1.41E-06 2
1.2033 1.60E-06 3 1.9442 1.40E-06 2
1.2161 1.77E-06 1 1.9442 1.39E-06 5
1.2231 1.69E-06 2 1.9542 1.35E-06 3
1.2432 1.64E-06 2 1.9642 1.43E-06 2
1.2532 1.52E-06 3 1.9832 1.46E-06 1
1.2632 1.61E-06 2 1.9842 1.45E-06 2
1.2833 1.56E-06 2 1.9842 1.46E-06 5
1.3033 1.52E-06 2 2.0042 1.47E-06 2
1.3234 1.51E-06 2 2.0042 1.41E-06 3
1.3434 1.49E-06 2 2.0243 1.53E-06 2
1.3534 1.43E-06 3 2.0243 1.56E-06 5
1.3635 1.47E-06 2 2.0443 1.57E-06 2
1.3835 1.44E-06 2 2.0543 1.50E-06 3
1.4035 1.40E-06 2 2.0643 1.65E-06 2
1.4035 1.39E-06 3 2.0833 1.65E-06 1
1.4536 1.40E-06 2 2.0843 1.72E-06 2
1.4536 1.36E-06 3 2.0843 1.80E-06 4
1.5036 1.36E-06 2 2.0843 1.68E-06 5
1.5036 1.32E-06 3 2.0944 1.84E-06 4
1.5536 1.37E-06 2 2.1044 1.81E-06 2
1.5536 1.29E-06 3 2.1044 1.73E-06 3
1.6037 1.36E-06 2 2.1044 1.87E-06 4
1.6037 1.26E-06 3 2.1144 1.92E-06 4
1.6428 1.29E-06 1 2.1245 1.89E-06 2
1.6538 1.33E-06 2 2.1245 2.00E-06 5
1.6538 1.24E-06 3 2.1245 1.98E-06 4
1.7039 1.34E-06 2 2.1345 2.06E-06 4
1.7039 1.24E-06 3 2.1445 2.10E-06 2
1.754 1.32E-06 2 2.1445 2.14E-06 4
1.754 1.31E-06 4 2.1495 2.19E-06 4
1.754 1.25E-06 3 2.1546 2.11E-06 3
1.8041 1.33E-06 2 2.1546 2.24E-06 4
1.8041 1.30E-06 5 2.1596 2.28E-06 4
1.8041 1.26E-06 3 2.1646 2.28E-06 2
1.8231 1.28E-06 1 2.1646 2.33E-06 4
2.1696 2.38E-06 4 2.6054 3.36E-06 5
2.1768 2.54E-06 5 2.7057 3.40E-06 3
2.1778 2.49E-06 4 2.806 3.47E-06 5
2.1798 2.50E-06 4 3.0063 3.51E-06 5
2.1846 2.53E-06 4 3.2066 3.57E-06 3
2.1896 2.56E-06 4 3.2066 3.52E-06 5
2.1946 2.59E-06 4 3.4069 3.51E-06 5
2.1996 2.62E-06 4 3.607 3.47E-06 5
2.2046 2.69E-06 5 3.7071 3.51E-06 3
2.3047 2.94E-06 3 3.8071 3.41E-06 5
2.3047 2.98E-06 5 4.007 3.34E-06 5
2.4049 3.16E-06 5 4.2071 .26E-06 3
2.5052 3.24E-06 3 4.2071 3.26E-06 5
2.5052 3.28E-06 5 4.407 3.16E-06 5

Figure 12.1. The recommended values of the viscosity of liquid 4He as a function of temperature at saturated vapor pressure.

Table 12.2. Knots and coefficients for the spline fit of the viscosity of liquid 4He. The spline returns the viscosity in Pa?s.

Knots

Coefficients
K(1) = 7.913364E-1 C(1) = 1.730865E-5
K(2) = 7.913364E-01 C(2) = 6.577810E-6
K(3) = 7.913364E-1 C(3) = 4.956473E-6
K(4) = 7.913364E-1 C(4) = 1.862435E-6
K(5) = 9.705100E-1 C(5) = 1.452672E-6
K(6) = 1.064730E+0 C(6) = 1.308345E-6
K(7) = 1.285930E+0 C(7) = 1.273173E-6
K(8) = 1.582100E+0 C(8) = 1.338821E-6
K(9) = 1.747010E+0 C(9) = 1.613257E-6
K(10) = 2.025680E+0 C(10) = 1.956558E-6
K(11) = 2.051740E+0 C(11) = 2.296259E-6
K(12) = 2.146961E+0 C(12) = 2.514817E-6
K(13) = 2.176800E+0 C(13) = 2.487748E-6
K(14) = 2.176800E+0 C(14) = 2.715638E-6
K(15) = 2.176800E+0 C(15) = 3.125798E-6
K(16) = 2.212906E+0 C(16) = 3.487019E-6
K(17) = 2.221800E+0 C(17) = 3.564378E-6
K(18) = 2.618000E+0 C(18) = 3.486451E-6
K(19) = 3.253700E+0 C(19) = 3.270547E-6
K(20) = 3.784200E+0 C(20) = 3.226615E-6
K(21) = 4.025400E+0 C(21) = 3.160000E-6
K(22) = 4.406982E+0  
K(23) = 4.406982E+0  
K(24) = 4.406982E+0  
K(25) = 4.406982E+0  

Figure 12.2. The fractional deviation of values of the adopted database from the recommended values for the viscosity of liquid 4He expressed in percent.

Table 12.3. Recommended values of the viscosity of liquid 4He at the saturated vapor pressure.

T90 (K)

(Pa-s)

T90 (K)

(Pa-s)
0.8 1.582E-5 2.18 2.512 E-6
0.85 9.537E-6 2.19 2.553 E-6
0.9 6.288E-6 2.2 2.635 E-6
0.95 4.806E-6 2.25 2.840 E-6
1.0 3.873E-6 2.3 2.956 E-6
1.05 3.028E-6 2.35 3.053 E-6
1.1 2.391E-6 2.4 3.135 E-6
1.15 1.980E-6 2.45 3.203 E-6
1.2 1.736E-6 2.5 3.259 E-6
1.25 1.604E-6 2.55 3.306 E-6
1.3 1.527E-6 2.6 3.346 E-6
1.35 1.466E-6 2.65 3.380 E-6
1.4 1.416E-6 2.7 3.410 E-6
1.45 1.377E-6 2.75 3.436 E-6
1.5 1.346E-6 2.8 3.459 E-6
1.55 1.323E-6 2.85 3.478 E-6
1.6 1.306E-6 2.9 3.494 E-6
1.65 1.295E-6 2.95 3.507 E-6
1.7 1.290E-6 3.0 3.517 E-6
1.75 1.290E-6 3.05 3.524 E-6
1.8 1.298E-6 3.1 3.529 E-6
1.85 1.316E-6 3.15 3.532 E-6
1.9 1.347E-6 3.2 3.534 E-6
1.95 1.397E-6 3.25 3.533 E-6
2.0 1.468E-6 3.3 3.532 E-6
2.05 1.569E-6 3.35 3.528 E-6
2.1 1.803E-6 3.4 3.524 E-6
2.11 1.868E-6 3.45 3.517 E-6
2.12 1.936E-6 3.5 3.509 E-6
2.13 2.008E-6 3.55 3.499 E-6
2.14 2.083E-6 3.6 3.487 E-6
2.15 2.161E-6 3.65 3.472E-6
2.16 2.252E-6 3.7 3.456E-6
2.17 2.385E-6 3.75 3.437E-6
2.171 2.402E-6 3.8 3.415E-6
2.172 2.419E-6 3.85 3.392E-6
2.173 2.438E-6 3.9 3.367E-6
2.174 2.457E-6 3.95 3.342E-6
2.175 2.477E-6 4.0 3.319E-6
2.176 2.498E-6 4.05 3.298E-6
2.1768 2.515E-6 4.1 3.279E-6
2.177 2.514E-6 4.15 3.261E-6
2.178 2.513E-6 4.2 3.244E-6
2.179 2.512E-6    

Figure 12.3. The recommended values of the kinematic viscosity of liquid 4He, ?=?/?, as a function of temperature at the saturated vapor pressure.

Table 12.4. Recommended values of the kinematic viscosity of liquid 4He.


T90 (K)

V(m2 s-1)

T90 (K)

V(m2 s-1)
0.80 1.090E-7 2.65 2.349E-8
0.85 6.572E-8 2.70 2.375E-8
0.90 4.333E-8 2.75 2.399E-8
0.95 3.311E-8 2.80 2.421E-8
1.00 2.669E-8 2.85 2.441E-8
1.05 2.086E-8 2.90 2.459E-8
1.10 1.648E-8 2.95 2.475E-8
1.15 1.364E-8 3.00 2.490E-8
1.20 1.197E-8 3.05 2.503E-8
1.25 1.106E-8 3.10 2.515E-8
1.30 1.052E-8 3.15 2.526E-8
1.35 1.010E-8 3.20 2.536E-8
1.40 9.756E-9 3.25 2.545E-8
1.45 9.484E-9 3.30 2.553E-8
1.50 9.273E-9 3.35 2.561E-8
1.55 9.114E-9 .40 2.567E-8
1.60 8.997E-9 3.45 2.574E-8
1.65 8.918E-9 3.50 2.579E-8
1.70 8.878E-9 3.55 2.583E-8
1.75 8.880E-9 3.60 2.586E-8
1.80 8.929E-9 3.65 2.588E-8
1.85 9.048E-9 3.70 2.589E-8
1.90 9.263E-9 3.75 2.588E-8
1.95 9.598E-9 3.80 2.586E-8
2.00 1.008E-8 3.85 2.582E-8
2.05 1.077E-8 3.90 2.579E-8
2.10 1.237E-8 3.95 2.575E-8
2.15 1.481E-8 4.00 2.573E-8
2.20 1.804E-8 4.05 2.574E-8
2.25 1.945E-8 4.10 2.576E-8
2.30 2.027E-8 4.15 2.581E-8
2.35 2.097E-8 4.20 2.587E-8
2.40 2.157E-8 4.25 2.593E-8
2.45 2.207E-8 4.30 2.600E-8
2.50 2.250E-8 4.35 2.605E-8
2.55 2.287E-8 4.40 2.609E-8
2.60 2.320E-8    

Chronological Bibliography for Mutual Friction


1

D. Coster, "The Rotational Oscillation of a Cylinder in a Viscous Liquid," Phil. Mag. 37, 587-595 (1919).
2 J. O. Wilhelm, A. D. Misener, and A. R. Clark, “The Viscosity of Liquid Helium,” Proc. Roy. Soc. A 151, 366-374 (1935).
3 R. Bowers and K. Mendelssohn, “The Viscosity of Liquid Helium Between 2 and 5 Degrees K,” Proc. Roy. Soc. A 204, 366-374 (1950).
4 A. De Troyer, A. Van Itterbeek, and G. J. Van Den Berg, “Measurements on the Viscosity of Liquid Helium by Means of the Oscillating Disc Method,” Physica 17, 50-62 (1951)
5 W. Heikkila and A. C. Hollis Hallet, “The Viscosity of Liquid Helium II,” Can J. Phys. 33, 420-435 (1955).
6 C. B. Benson and A. C. Hollis Hallett, “The Oscillating Sphere at Large Amplitudes in Liquid Helium,” Can. J. Phys. 34, 668-678 (1956).
7 J. G. Dash and R. D. Taylor, “Hydrodynamics of Oscillating Disks in Viscous Fluids: Density and Viscosity of Normal Fluid in Pure 4He from 1.2K to the Lambda Point,” Phys. Rev. 105, 7-24 (1957).
8 J. G. Dash and R. D. Taylor, “Hydrodynamics of Oscillating Disks in Viscous Fluids: Density and Viscosities of Liquids 3He and 4He,” Phys. Rev. 106, 398-403 (1957).
9 K. M. Eisele and A. C. Hollis Hallett, “The Viscosity of Liquid Helium at Frequencies of 11.8 and 35.5 KC./Sec,” Can. J. Phys. 36, 25-34 (1958).
10 K. N. Zinov'eva, “Viscosity of Liquid 3He in the Range 0.35-3.2 Degrees K and 4He Above the Lambda Point,” Sov. Phys. JETP 34, 421-425 (1958).
11 D. F. Brewer and D. O. Edwards, “The Heat Conductivity and Viscosity of Liquid Helium II,” Proc. Roy. Soc. A 251, 247-264 (1959).
12 B. Welber, “Damping of a Torsionally Oscillating Cylinder in Liquid Helium at Various Temperatures and Densities,” Phys. Rev. 119, 1816-1822 (1960).
13 A. D. B. Woods and A. C. Hollis Hallett, “The Viscosity of Liquid Helium II Between 0.79 Degrees K and the Lambda Point,” Can. J. Phys. 41, 596-609 (1962).
14 J. T. Tough, W. D. McCormick, and J. G. Dash, “Viscosity of Liquid Helium II,” Phys. Rev. 132, 2373-2378 (1963).
15 D. Caldwell, “Oscillating Boundary Layer in Magnetohydrodynamics I: Nonconducting Boundary,” Phys. Fluids 7, 1062-1070 (1964).
16 D. Caldwell, “Oscillating Boundary Layer in Magnetohydrodynamics II: Conducting Boundary,” Phys. Fluids 7, 1338-1348 (1964).
17 R. W. H. Webeler and D. C. Hammer, “Viscosity X Normal Density of Liquid Helium in a Temperature Interval About the Lambda Point,” Phys. Lett. 15, 233-234 (1965).
18 J. M. Goodwin, “The Pressure Dependence of Viscosity in Liquid Helium,” Ph.D. Thesis, University of Washington, 1968 (unpublished).
19 R. W. H. Webeler and G. Allen, “Measurement of ??? Versus T Near T Lambda of Dilute 3He - 4He Mixtures and Their Implication for Pure 4He,” Phys. Lett. A 33, 213-214 (1970).
20 G. Ahlers, “On the Viscosity of 4He Near the Superfluid Transition,” Phys. Lett. A 37, 151-152 (1971).
21 R. W. H. Webeler and G. Allen, “Lambda-Point Measurement of ??n for Pure 4He and for Three 3He-4He Mixtures,” Phys. Rev. A 5, 1820-1827 (1972).
22 J. M. Goodwin, “A Vibrating Wire Viscometer for Measurements at Elevated Pressures,” J. Phys. E 6, 452-456 (1973).
23 J. M. Goodwin, “The Viscosity of Pressurized 4He Above T Lambda,” Physica 76, 177-180 (1974).
24 R. Biskeborn and R. W. Guernsey, “Critical Exponents for the Shear Viscosity of 4He at T Lambda,” Phys. Rev. Lett. 34, 455-458 (1975).
25 L. Bruschi and M. Santini, “Vibrating Wire Viscometer,” Rev. Sci. Instr. 46, 1560-1568 (1975).
26 L. Bruschi, G. Mazzi, M. Santini, and G. Torzo, “The Behavior of the 4He Viscosity Near the Superfluid Transition,” J. Low Temp. Phys. 29, 63-88 (1977).
27 L. Bruschi and M. Santini, “The 4He Viscosity Near the Superfluid Transition Under Pressure,” J. Low Temp. Phys. 33, 357-368 (1978).
28 S. Wang, C. Howald, and H. Meyer, “Shear Viscosity of Liquid 4He and 3He-4He Mixtures, Especially Near the Superfluid Transition,” J. Low Temp. Phys. 26, 151-187 (1990).

 

<<Previous Intro ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 Next>>
ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 ch21

    © 2004 All Rights Reserved.