|
|
The
Observed Properties of Liquid Helium
at the Saturated Vapor
Pressure
Chapter 2. Superfluid and Normal Fluid Densities
Author(s) |
Key # |
Method |
Range (K) |
Uncertainty % |
Landau
Theory |
1 |
Integration
|
0.1
T
1.25 |
|
Maynard
|
2 |
u2
& u4 |
1.2
T
2.15 |
<
5 |
Tam
& Ahlers |
3 |
u2
& u4 |
1.553
T
2.15917 |
<
5 |
Singsass
& Ahlers |
4 |
Asymptotic
formula |
T
> 2.207 |
see
paper |
1) We
have generated 24 points of pn, the normal fluid density from
0.1 to 1.25 K by integrating over the dispersion curve of Chapter 13.
This method is very good at low temperatures, but by 1 K starts to degrade
because the spectrum becomes temperature dependent. We used the total
density from Chapter 1 to generate the superfluid density .
2) Data from Reference 22.
3) Data from Reference 25.
4) Singsass and Ahlers, Ref. 24, give the asymptotic formula
with
t=1-(T/T), k0=2.403,
k1=-1.46, Dp=0.33, =0.6717
and =0.5.
The formula is based on new precision entropy data. We generated 18 points
from 2.1 to 2.1768 K.
5) The total density from chapter 1 is used to compute quantities such
as .
6) The densities are tabulated in g/cm3. Multiply the entries by 1000
to convert to kg/m3.
Table
2.1. The adopted database for the superfluid density of helium II as a
function of temperature.
T90(K) |
ps(g/cm)3 |
key |
T90(K) |
ps(g/cm)3 |
key |
0
0. |
14514
|
1 |
1.85411900 |
0.09193 |
2 |
0.10036490 |
0.1451
|
1 |
1.90415100
|
0.08359
|
2 |
0.15053830
|
0.1451
|
1
|
1.90415100
|
0.08419 |
3 |
0.20070610
|
0.1451
|
1
|
1.90415100
|
0.08421 |
3 |
0.25086810 |
0.1451 |
1 |
1.95418900
|
0.0742
|
2 |
0.30102560 |
0.1451 |
1 |
1.95418900
|
0.07493 |
3 |
0.35117790
|
0.1451
|
1 |
1.95418900 |
0.07499 |
3 |
0.40132560 |
0.1451 |
1 |
2.00423400 |
0.0636 |
2 |
0.45146850 |
0.1451 |
1 |
2.00423400
|
0.06421 |
3 |
0.50160770
|
0.1451 |
1 |
2.05429300 |
0.05145
|
2 |
0.55174260
|
0.1451
|
1 |
2.05429300 |
0.05164
|
3 |
0.60187360
|
0.1451
|
1 |
2.05429300 |
0.05168
|
3 |
0.65199130
|
0.1451
|
1
|
2.07680000 |
0.04419
|
4 |
0.70212460
|
0.1451 |
1 |
2.08434800
|
0.04297
|
3 |
0.75224480
|
0.145 |
1 |
2.10439900 |
0.03669 |
2 |
0.80236180
|
0.145 |
1 |
2.10439900
|
0.03651 |
3 |
0.85247570
|
0.1449
|
1
|
2.10439900 |
0.03652
|
3 |
0.90258630
|
0.1447
|
1
|
2.11442900 |
0.03302 |
3 |
0.95269420
|
0.1444
|
1
|
2.12446200 |
0.02935
|
3 |
1.00277700
|
0.1441
|
1
|
2.12680000
|
0.02821 |
4 |
1.05286100
|
0.1436 |
1 |
2.13449700 |
0.02539
|
3 |
1.10295500
|
0.143
|
1 |
2.14453100 |
0.02108 |
3 |
1.15302900
|
0.1422
|
1 |
2.14954700
|
0.01873 |
3 |
1.20326700
|
0.141 |
2 |
2.15456300 |
0.01633
|
3 |
1.20326700
|
0.1411
|
1 |
2.15456300
|
0.01628
|
3 |
1.25320300
|
0.1399
|
1
|
2.15456300 |
0.0167 |
2 |
1.25320300
|
0.1398
|
2
|
2.15857500
|
0.01409 |
3 |
1.30332400
|
0.1383
|
2
|
2.16058000 |
0.01308
|
3 |
1.35344300
|
0.1364
|
2
|
2.16258600 |
0.01218
|
3 |
1.40351500
|
0.1343 |
2
|
2.16358900 |
0.0112
|
3 |
1.45355700
|
0.1317 |
2 |
2.16680000
|
0.00959 |
4 |
1.50359800
|
0.1287 |
2 |
2.17080000
|
0.00679
|
4 |
1.55363700
|
0.1253
|
2 |
2.17380000 |
0.00425 |
4 |
1.55664000
|
0.1244 |
3 |
2.17580000 |
0.00202
|
4 |
1.60369000
|
0.1208
|
3
|
2.17620000 |
0.00143
|
4 |
1.60369000
|
0.1213 |
2 |
2.17650000 |
8.99048E-4
|
4 |
1.65377900
|
0.1168 |
2 |
2.17670000
|
4.29195E-4 |
4 |
1.65377900
|
0.1166
|
3
|
2.17674000
|
3.04392E-4 |
4 |
1.70388200
|
0.1117 |
2 |
2.17677000 |
1.90995E-4
|
4 |
1.70388200
|
0.1116 |
3 |
2.17679000
|
9.12685E-5 |
4 |
1.75398100
|
0.1059
|
2 |
2.17679500
|
5.72837E-5
|
4 |
1.75398100
|
0.106 |
3 |
2.17679900 |
1.94274E-5 |
4 |
1.80406500
|
0.09933
|
2 |
2.17679950 |
1.21951E-5 |
4 |
1.80406500
|
0.09958
|
3
|
2.17679990 |
4.13664E-6 |
4 |
1.85411900
|
0.09241 |
3 |
2.17680000 |
0 |
|
Table 2.2. Knots and coefficients of the spline fit of the superfluid
density of helium II.
Knots |
Coefficients |
K(1)=0.0 |
C(1)=1.451275432822459E-1 |
K(2)=0.0 |
C(2)=1.451334563362309E-1 |
K(3)=0.0 |
C(3)=1.449759191497576E-1 |
K(4)=0.0 |
C(4)=1.455008000684433E-1 |
K(5)=0.443 |
C(5)=1.4075E-1 |
K(6)=0.9012 |
C(6)=1.095E-1 |
K(7)=1.5419 |
C(7)=8.15E-2 |
K(8)=1.7540 |
C(8)=5.30E-2 |
K(9)=1.918 |
C(9)=2.1E-2 |
K(10)=2.111 |
C(10)=8.904576E-3 |
K(11)=2.156991 |
C(11)=3.053214E-3 |
K(12)=2.173218 |
C(12)=1.494043E-3 |
K(13)=2.175647 |
C(13)=8.342826E-4 |
K(14)=2.176358 |
C(14)=5.10686E-4 |
K(15)=2.176568 |
C(15)=2.8379E-4 |
K(16)=2.176692 |
C(16)=1.287426E-4 |
K(17)=2.176766 |
C(17)=5.202569E-5 |
K(18)=2.176791 |
C(18)=2.153580E-5 |
K(19)=2.176798 |
C(19)=8.564206E-6 |
K(20)=2.176799 |
C(20)=3.567958E-6 |
K(21)=2.17679999 |
C(21)=0 |
K(22)=2.1768 |
|
K(23)=2.1768 |
|
K(24)=2.1768 |
|
K(25)=2.1768 |
|
Figure
2.1. Recommended values of the superfluid density of helium II as a function
of temperature.
Figure
2.2. Recommended values of the superfluid density of helium II near the
lambda transition.
Figure 2.3. The fractional
deviation of the adopted database from the recommended values for the
superfluid density of helium II expressed in percent.
Table
2.3. Recommended values of the normal and superfluid densities of helium
II.
T90(K) |
ps(g/cm3) |
pn(g/cm3)
|
T90(K) |
ps(g/cm3) |
pn(g/cm3) |
0
|
0.14513 |
0 |
1.45
|
0.13199
|
0.01316 |
0.05
|
0.14513 |
2.95E-9 |
1.5 |
0.12900
|
0.01617 |
0.1
|
0.14512
|
5.9E-9 |
1.55 |
0.12556
|
0.01963 |
0.15
|
0.14511
|
8.85E-9
|
1.6 |
0.12163 |
0.02358 |
0.2
|
0.14510
|
2.771E-8
|
1.65
|
0.11715
|
0.02809 |
0.25
|
0.14509
|
6.687E-8 |
1.7 |
0.11206
|
0.03321 |
0.3
|
0.14509
|
1.368E-7
|
1.75
|
0.10630
|
0.03900 |
0.35
|
0.14508
|
2.502E-7 |
1.8 |
0.09982
|
0.04554 |
0.4
|
0.14508 |
4.242E-7
|
1.85
|
0.09254
|
0.05286 |
0.45
|
0.14509
|
7.03E-7 |
1.9 |
0.08444
|
0.06103 |
0.5
|
0.14511
|
1.249E-6
|
1.95
|
0.07542
|
0.07012 |
0.55
|
0.14512
|
2.588E-6
|
2 |
0.06507
|
0.08055 |
0.6
|
0.14513
|
6.069E-6
|
2.05
|
0.05275
|
0.09297 |
0.65
|
0.14513 |
1.452E-5
|
2.1 |
0.03779
|
0.10804 |
0.7
|
0.14511 |
3.295E-5
|
2.11
|
0.03443
|
0.11143 |
0.75
|
0.14506
|
6.923E-5
|
2.12
|
0.03091
|
0.11497 |
0.8
|
0.14498
|
1.345E-4 |
2.13
|
0.02718
|
0.11874 |
0.85
|
0.14486
|
2.431E-4
|
2.14
|
0.02311 |
0.12284 |
0.9
|
0.14469
|
4.127E-4
|
2.15
|
0.01862
|
0.12737 |
0.95
|
0.14446
|
6.636E-4
|
2.16
|
0.01359
|
0.13243 |
1 |
0.14414 |
0.00102
|
2.17
|
0.00729
|
0.13878 |
1.05
|
0.14371
|
0.00141
|
2.171
|
0.00652
|
0.13955 |
1.1 |
0.14313 |
0.00199
|
2.172
|
0.00572
|
0.14036 |
1.15
|
0.14235
|
0.00276 |
2.173
|
0.00489
|
0.14120 |
1.2
|
0.14137
|
0.00375
|
2.174
|
0.00401
|
0.14208 |
1.25
|
0.14012
|
0.00499
|
2.175
|
0.00300
|
0.14310 |
1.3 |
0.13860 |
0.00652
|
2.176
|
0.00175 |
0.14436 |
1.35 |
0.13676
|
0.00837
|
2.1768
|
0 |
0.14611 |
1.4 |
0.13457 |
0.01057 |
|
|
|
Table
2.4. Recommended values of superfluid and normal fluid density ratios
for helium II as a function of temperature.
T90(K) |
ps
/ p |
pn
/ p |
T90(K) |
ps
/ p |
pn
/ p |
0
|
1.000
|
0
|
1.45 |
0.909 |
0.091 |
0.05 |
1.000 |
2.03E-8
|
1.50
|
0.889
|
0.111 |
0.1
|
1.000
|
4.06E-8
|
1.55 |
0.865
|
0.135 |
0.15
|
1.000
|
6.10E-8
|
1.60
|
0.838
|
0.162 |
0.2
|
1.000
|
1.91E-7
|
1.65
|
0.807
|
0.193 |
0.25
|
1.000
|
4.60E-7 |
1.70 |
0.771 |
0.229 |
0.3
|
1.000
|
9.42E-7
|
1.75
|
0.732
|
0.268 |
0.35
|
1.000
|
1.72E-6
|
1.80 |
0.687 |
0.313 |
0.4
|
1.000
|
2.92E-6
|
1.85
|
0.636
|
0.364 |
0.45
|
1.000 |
4.84E-6 |
1.90 |
0.580
|
0.420 |
0.5
|
1.000
|
8.61E-6 |
1.95 |
0.518 |
0.482 |
0.55
|
1.000 |
1.78E-5 |
2.00 |
0.447
|
0.553 |
0.6 |
1.000 |
4.18E-5
|
2.05
|
0.362 |
0.638 |
0.65
|
1.000
|
1.00E-4
|
2.10 |
0.259
|
0.741 |
0.7
|
1.000
|
2.27E-4 |
2.11 |
0.236 |
0.764 |
0.75 |
1.000 |
4.77E-4
|
2.12
|
0.212
|
0.788 |
0.8
|
0.999
|
9.27E-4 |
2.13 |
0.186
|
0.814 |
0.85
|
0.998
|
2.00E-3
|
2.14
|
0.158 |
0.842 |
0.9
|
0.997
|
3.00E-3
|
2.15
|
0.128
|
0.872 |
0.95
|
0.995 |
5.00E-3
|
2.16
|
0.093
|
0.907 |
1
|
0.993
|
7.00E-3
|
2.17
|
0.050
|
0.950 |
1.05
|
0.990
|
1.00E-2
|
2.171
|
0.045 |
0.955 |
1.1
|
0.986
|
1.40-2
|
2.172
|
0.039 |
0.961 |
1.15
|
0.981 |
1.9E-2
|
2.173
|
0.033
|
0.967 |
1.2
|
0.974
|
2.6E-2 |
2.174
|
0.027 |
0.973 |
1.25 |
0.966 |
3.4E-2 |
2.175 |
0.021 |
0.979 |
1.3
|
0.955
|
4.5E-2 |
2.176
|
0.012 |
0.988 |
1.35
|
0.942 |
5.8E-2
|
2.1768
|
0
|
1.000 |
Chronological
Bibliography for Superfluid Density
1 |
E. L. Andronikashvili, "Direct Observation of Two Types of Motion
in Helium II," Zhur. Ekxp. Theor. Fiz 16, 780-785 (1946). |
2 |
V.
P. Peshkov, “Determination of the Velocity of Propagation of
the Second Sound in Helium II,” Sov. Phys. USSR 10, 389-398
(1946). |
3 |
E.
L. Andronikashvili, “Temperature Dependence of the Normal Density
of Helium II,” Zhur. Eksp. Theor. Fiz. 18, 424-428 (1948). |
4 |
J.
G. Dash and R. D. Taylor, “Hydrodynamics of Oscillating Disks
in Viscous Fluids: Density and Viscosity of Normal Fluid in Pure 4He
from 1.2K to the Lambda Point,” Phys. Rev. 105, 7-24 (1957). |
5 |
P.
J. Bendt, R. D. Cowan, and J. L. Yarnell, “Excitations in Liquid
Helium: Thermodynamic Calculations,” Phys. Rev. 113, 1386-1395
(1959). |
6 |
J.
T. Tough, W. D. McCormick, and J. G. Dash, “Viscosity of Liquid
Helium II,” Phys. Rev. 132, 2373-2378 (1963). |
7 |
J.
D. Reppy, “Application of Superfluid Gyroscope to the Study
of Critical Velocities in Liquid Helium Near the Lambda Transition,”
Phys. Rev. 14, 733-735 (1965). |
8 |
K.
A. Shapiro and I. Rudnick, “Experimental Determination of the
Fourth Sound Velocity in Helium II,” Phys. Rev. A 137, 1383-1391
(1965). |
9 |
J.
R. Clow and J. D. Reppy, “Temperature Dependence of the Superfluid
Density in Helium II Near T Lambda,” Phys. Rev. Lett. 16, 887-889
(1966). |
10 |
J.
A. Tyson and D. H. Douglass Jr., “Superfluid Density and Scaling
Laws for Liquid Helium Near T Lambda,” Phys. Rev. Lett. 17,
472-474 (1966). |
11 |
C. J. Pearce, J. A. Lipa, and M. J. Buckingham, “Velocity of
Sound Near the Lambda Point of Helium,” Phys. Rev. Lett. 20,
1471-1473 (1968). |
12 |
J.
A. Tyson, “Superfluid Density of Helium II in the Critical Region,”
Phys. Rev. 166, 166-176 (1968). |
13 |
J.
A. Tyson and D. H. Douglass Jr., “Critical-Region Second-Sound
Velocity in Helium II,” Phys. Rev. Lett. 21, 1308-1310 (1968). |
14 |
R.
H. Romer and R. J. Duffy, “Normal-Fluid Densities in Liquid
Helium II Under Pressure,” Phys. Rev. 186, 255-262 (1969). |
15 |
M.
Kriss and I. Rudnick, “Size Effects in Helium II as Measured
by Fourth Sound,” J. Low Temp. Phys. 3, 339-357 (1970). |
16 |
J.
R. Clow and J. D. Reppy, “Persistent-Current Measurements of
the Superfluid Density and Critical Velocity,” Phys. Rev. A
5, 424-438 (1972). |
17 |
D.
S. Greywall and G. Ahlers, “Second Sound Velocity, Scaling,
and Universality in Helium II Near the Superfluid Transition,”
Phys. Rev. Lett. 28, 1251-1254 (1972). |
18 |
S.
A. Scott, E. Guyon, and I. Rudnick, “Specific Heat and Superfluid
Density of Liquid Helium in Porous Media,” J. Low. Temp. Phys.
9, 389-407 (1972). |
19 |
D.
S. Greywall and G. Ahlers, “Second Sound Velocity and Superfluid
Density in 4He Under Pressure Near T Lambda,” Phys. Rev. A 7,
2145-2162 (1973). |
20 |
A.
Ikushima and G. Terui, “Superfluid Density Near the Lambda Point
of 4He Under Pressure,” J. Low Temp. Phys. 10, 397-405 (1973). |
21 |
G.
Ahlers, “Experiments Near the Superfluid Transition in 4He,”
in The Physics of Liquid and Solid Helium, edited by K. H. Bennemann
and J. B. Ketterson (Wiley, New York, 1976). |
22 |
J.
Maynard, “Determination of the Thermodynamics of Helium II from
Sound Velocity Data,” Phys. Rev. B 14, 3868-3890 (1976). |
23 |
A.
L. Singsaas, “Entropy of Helium II and Universality Near the
Superfluid Transition in 4He,” Ph.D. Thesis, University of California,
1984 (unpublished). |
24 |
A.
L. Singsaas and G. Ahlers, “Universality of Static Properties
Near the Superfluid Transition in 4He,” Phys. Rev. B 30, 5103-5115
(1984). |
25 |
W.
Y. Tam and G. Ahlers, “Superfluid Fraction of 4He from 1.5K
to T Lambda (P) and from Vapor Pressure to the Melting Curve,”
J. Low Temp. Phys. 66, 173-190 (1987) |
|
|